Skip to main content
Log in

94 GHz down-conversion mixer with gain enhanced Gilbert cell in 90 nm CMOS

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 94 GHz down-conversion mixer for image radar sensors using standard 90 nm CMOS technology is reported. The down-conversion mixer comprises a double-balanced Gilbert cell with an LC-tank-oscillator-based RF transconductance stage load for conversion gain (CG) enhancement and noise figure (NF) suppression, two miniature planar baluns for converting the single RF and LO input signals to differential signals, and an IF amplifier. The mixer consumes 9.5 mW and achieves excellent RF-port input reflection coefficient (S11) of −27.2 dB at 94 GHz, and S11 smaller than −10 dB for frequencies of 83.6–110 GHz. That is, RF-port −10 dB input matching bandwidth is greater than 26.4 GHz. In addition, for frequencies of 75–100 GHz, the mixer achieves CG of 4.9–7.9 dB (the corresponding 3-dB CG bandwidth is greater than 25 GHz), LO–RF isolation of 38.5–44.7 dB and NF of 15.4–21.2 dB, one of the best CG, LO–RF isolation and NF results ever reported for a down-conversion mixer with operation frequency around 94 GHz. Furthermore, the mixer achieves an excellent input third-order intercept point of 2.6 dBm at 94 GHz. These results demonstrate the proposed down-conversion mixer architecture is promising for 94 GHz image radar sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hwang, Y. J., Wang, H., & Chu, T. H. (2004). A W-band subharmonically pumped monolithic GaAas-based HEMT gate mixer. IEEE Microwave and Wireless Components Letters, 14(7), 313–315.

    Article  Google Scholar 

  2. Lee, S. J., Baek, T. J., Han, M., Choi, S. G., Ko, D. S., & Rhee, J. K. (2012). 94 GHz MMIC single-balanced mixer for FMCW radar sensor application. In Proceedings of the global symposium on millimeter waves (pp. 351–354).

  3. Jain, V., Tzeng, F., Zhou, L., & Heydari, P. (2009). A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars. IEEE Journal of Solid-State Circuits, 44(12), 3469–3485.

    Article  Google Scholar 

  4. Chen, A. Y. K., Baeyens, Y., Chen, Y. K., & Lin, J. (2010). A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging. IEEE Microwave and Wireless Components Letters, 20(2), 103–105.

    Article  Google Scholar 

  5. Kim, J., Kornegay, K. T., Alvarado, J., Jr., Lee, C. H., & Laskar, J. (2009). W-band double-balanced down-conversion mixer with Marchand baluns in silicon–germanium technology. Electronics Letters, 45(16), 841–843.

    Article  Google Scholar 

  6. Lin, Y. S., Wen, W. C., & Wang, C. C. (2014). 13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO–RF isolation. IEEE Microwave and Wireless Components Letters, 24(1), 495–497.

    Google Scholar 

  7. Zhang, N., Xu, H., Wu, H. T., & Kenneth, K. O. (2009). W-band active down-conversion mixer in bulk CMOS. IEEE Microwave and Wireless Components Letters, 19(2), 98–100.

    Article  Google Scholar 

  8. Lin, Y. S., & Li, G. H. (2014). A W-band down-conversion mixer in 90 nm CMOS with excellent matching and port-to-port isolation for automotive radars. In Proceedings of the eleventh international symposium on wireless communication systems (ISWCS) (pp. 54–58).

  9. Chou, M. L., Huang, F. H., & Chiu, H. C. (2013). A low LO power V-band Gilbert-cell down-conversion mixer using 90 nm CMOS technology. In Proceedings of the international conference on computational problem-solving (ICCP) (pp. 184–186).

  10. Lee, C. J., & Park, C. S. (2016). A D-band gain-boosted current bleeding down-conversion mixer in 65 nm CMOS for chip-to-chip communication. IEEE Microwave and Wireless Components Letters, 26(2), 143–145.

    Article  Google Scholar 

  11. Shi, J., Li, L., & Cui, T. J. (2013). A 60-GHz broadband Gilbert-cell down conversion mixer in a 65-nm CMOS. In Proceedings of the international conference on electron devices and solid-state circuits (pp. 1–2).

  12. Tsai, J. H., Yang, H. Y., Huang, T. W., & Wang, H. (2008). A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology. IEEE Microwave and Wireless Components Letters, 18(8), 554–556.

    Article  Google Scholar 

  13. Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques, 60(8), 2590–2604.

    Article  Google Scholar 

  14. Lin, Y. S., Liu, F. C., & Wen, W. C. (2014). Design and implementation of squared and octagonal W-band CMOS marchand baluns for W-band communication systems. Microwave and Optical Technology Letters, 56(10), 2205–2211.

    Article  Google Scholar 

  15. Wang, Y., Duster, J. S., Kornegay, K. T., Park, H., & Laskar, J. (2005). An 18 GHz low noise high linearity active mixer in SiGe. Proceedings of the IEEE International Circuits and Systems Symposium, 4, 3243–3246.

    Google Scholar 

  16. Chang, J. F., & Lin, Y. S. (2011). A high-performance distributed amplifier using multiple noise suppression techniques. IEEE Microwave and Wireless Components Letters, 21(9), 495–497.

    Article  Google Scholar 

  17. Chiu, H. W., Lu, S. S., & Lin, Y. S. (2005). A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10 mW DC power consumption on a thin (20 μm) substrate. IEEE Transaction on Microwave Theory and Techniques, 53(3), 813–824.

    Article  Google Scholar 

  18. Wang, T., Chen, H. C., Chiu, H. W., Lin, Y. S., Huang, G. W., & Lu, S. S. (2006). Micromachined CMOS LNA and VCO By CMOS compatible ICP deep trench technology. IEEE Transactions on Microwave Theory and Techniques, 54(2), 580–588.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under Contract MOST 105-2221-E-260-025-MY3. The authors are very grateful for the support from National Chip Implementation Center (CIC), Taiwan, for chip fabrication, and National Nano-Device Laboratory (NDL), Taiwan, for RF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo-Sheng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Wang, CC. & Liu, JM. 94 GHz down-conversion mixer with gain enhanced Gilbert cell in 90 nm CMOS. Analog Integr Circ Sig Process 93, 1–11 (2017). https://doi.org/10.1007/s10470-017-1019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1019-y

Keywords

Navigation