Skip to main content
Log in

Realization of companding filters with large time-constants for biomedical applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Configurations of companding filters with large time-constants are presented in this paper. For this purpose, novel Log-Domain and Sinh-Domain integrators are introduced, where the realization of time-constants is achieved through a capacitor multiplication. The same concept has been followed in the case of realization of the Log-Domain and Sinh-Domain equivalents of passive elements. The performance of the derived filters has been evaluated through simulation and comparison results using the Analog Design Environment of the Cadence software and MOS transistors parameters provided by the TSMC 180 nm CMOS process. As a design example, a fourth-order bandpass filter has been realized for extracting the alpha, beta, gamma, and theta waves of an electroencephalogram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tsividis, Y. (1997). Externally linear, time-invariant systems and their applications to companding signal processors. IEEE Transactions on Circuits and Systems, Part II, 44(2), 65–85.

    Article  Google Scholar 

  2. Frey, D. R. (2000). Log-domain filtering: An approach to current-mode filtering. IET Proceedings on Circuits, Devices, and Systems, Part G, 140(6), 406–416.

    Article  MathSciNet  Google Scholar 

  3. Solis-Bustos, S., Silva-Martinez, J., Maloberti, F., & Sanchez-Sinencio, E. (2000). A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Transactions on Circuits and Systems, Part II, 47(12), 1391–1398.

    Article  Google Scholar 

  4. Rieger, R., Demosthenous, A., & Taylor, J. (2004). A 230-nW 10-s time constant CMOS integrator for an adaptive nerve signal amplifier. IEEE Journal of Solid-State Circuits, 39(11), 1968–1975.

    Article  Google Scholar 

  5. Bruschi, P., Nizza, N., Pieri, F., Schipani, M., & Cardisciani, D. (2007). A fully integrated single-ended 1.5–15-Hz low-pass filter with linear tuning law. IEEE Journal of Solid State Circuits, 42(7), 1522–1528.

    Article  Google Scholar 

  6. Corbishley, P., & Rodríguez-Villegas, E. (2007). A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector acoustic signal in a wearable breathing detector. IEEE Transactions on Biomedical Circuits and Systems, 1(3), 163–171.

    Article  Google Scholar 

  7. Chen, C.-H., Mak, P.-I., Zhang, T.-T., Vai, M.-I., Mak, P.-U., Pun, S.-H., Wan, F., & Martins, R. (2009). A 2.4 Hz-to-10 kHz-tunable biopotential filter using a novel capacitor multiplier. In Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics—PrimeAsia, June 2009 (pp. 372–375).

  8. Rodriguez-Villegas, E., Casson, A., & Corbishley, P. (2011). A subhertz nanopower low-pass filter. IEEE Transactions on Circuits and Systems, Part II, 58(6), 351–355.

    Article  Google Scholar 

  9. Mak, P.-U., Law, M.-K., Pun, S.-H., Wan, F., & Martins, R. 15-nW biopotential LPFs in 0.35-um using subthreshold-source-follower biquads with and without gain compensation. IEEE Transactions on Biomedical Circuits and Systems. doi:10.1109/TBCAS.2013.2238233.

  10. Di Cataldo, G., Ferri, G., & Pennisi, S. (1998). Active capacitance multipliers using current conveyors. In IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, May 1998 (Vol. 2, pp. 343–346).

  11. Khan, A., Bimal, S., Dey, K., & Roy, S. (2002). Current conveyor based R- and C-multiplier circuits. International Journal of Electronics and Communications (AEU), 56(5), 312–316.

    Article  Google Scholar 

  12. Aguado-Ruiz, J., Hernandez-Alvidrez, J., Lopez-Martin, A., Carvajal, R., & Ramirez-Angulo, J. (2009). Programmable capacitance scaling scheme based on operational transconductance amplifiers. Electronics Letters, 45(3), 159–161.

    Article  Google Scholar 

  13. De Marcellis, A., Ferri, G., Guerrini, C., Scotti, G., Stornelli, V., & Trifiletti, A. (2009). The VCG-CCII: A novel building block and its application to capacitance multiplication. Analog Integrated Circuits and Signal Processing, 58(1), 55–59.

    Article  Google Scholar 

  14. Aguado-Ruiz, J., Lopez-Martin, A., & Ramirez-Angulo, J. (2012). Three novel improved CMOS C-multipliers. International Journal of Circuit Theory and Applications, 40(6), 607–616.

    Article  Google Scholar 

  15. Padilla-Cantoya, I. (2013). Capacitor multiplier with wide dynamic range and large multiplication factor for filter applications. IEEE Transactions on Circuits and Systems, Part II, 60(3), 152–156.

    Google Scholar 

  16. Perry, D., & Roberts, G. W. (1996). The design of log-domain filters based on the operational simulation of LC ladders. IEEE Transactions on Circuits and Systems, Part II, 43(11), 763–774.

    Article  Google Scholar 

  17. El-Gamal, M. N., & Roberts, G. W. (2002). A 1.2-V n–p–n only integrator for log-domain filtering. IEEE Transactions on Circuits and Systems, Part II, 49(4), 257–265.

    Article  Google Scholar 

  18. Psychalinos, C. (2007). Realization of log-domain high-order transfer functions using first-order building blocks and complementary operators. International Journal of Circuit Theory and Applications, 35(1), 17–32.

    Article  MATH  Google Scholar 

  19. Kontogiannopoulos, N., & Psychalinos, C. (2005). Log-domain filtering by simulating the topology of passive prototype. IEEE Transactions on Circuits and Systems, Part I: Regular Papers, 52(10), 2043–2054.

    Article  Google Scholar 

  20. Lopez-Martin, A., & Carlosena, A., (1999). Synthesis of sinh systems from Gm-C systems by component to component substitution. In 42nd Midwest Symposium on Circuits and Systems (MWSCAS), Las Cruses, NM, USA, August 1999 (pp. 287–290).

  21. Serdijn, W., Kouwenhoven, M., Mulder, J., & van Roermund, A. (1999). Design of high dynamic range fully integratable translinear filters. Analog Integrated Circuits and Signal Processing, 19(3), 223–239.

    Article  Google Scholar 

  22. Katsiamis, A., Glaros, K., & Drakakis, E. (2008). Insights and advances on the design of CMOS Sinh companding Filters. IEEE Transactions on Circuits and Systems, Part I, 55(9), 2539–2550.

    Article  MathSciNet  Google Scholar 

  23. Kasimis, C., & Psychalinos, C. (2012). Design of Sinh-Domain filters using complementary operators. International Journal of Circuit Theory and Applications, 40(10), 1019–1039.

    Article  Google Scholar 

  24. Kasimis, C., & Psychalinos, C. (2012). 1.2 V biCMOS Sinh-domain filters. Circuits Systems and Signal Processing, 31(4), 1257–1277.

    Article  MathSciNet  Google Scholar 

  25. Haddad, S., Bagga, S., & Serdijn, W. (2005). Log-domain wavelet bases. IEEE Transactions on Circuits and Systems, Part I, 52(10), 2013–2031.

    Article  Google Scholar 

  26. Georgiou, P., & Toumazou, C. (2007). A silicon pancreatic beta cell for diabetes. IEEE Transactions on Biomedical Circuits and Systems, 1(1), 39–49.

    Article  Google Scholar 

  27. Thanapitak, S., & Toumazou, C. (2013). A bionics chemical synapse. IEEE Transactions on Biomedical Circuits and Systems, 7(3), 296–306.

    Article  Google Scholar 

  28. Demartinos, A. C., Kasimis, C., Laoudias, C., & Psychalinos, C., (2013). Companding realizations of the non-linear energy operator. ISRN Biomedical Engineering, 2013. http://dx.doi.org/10.1155/2013/750290.

  29. Giagkoulovits, C., & Psychalinos, C. (2013). 0.5 V cardiac sense amplifier realization using log-domain filtering. ISRN Biomedical Engineering, 2013. http://dx.doi.org/10.1155/2013/369850.

  30. http://www.physionet.org/cgi-bin/atm/ATM.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Psychalinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kafe, F., Psychalinos, C. Realization of companding filters with large time-constants for biomedical applications. Analog Integr Circ Sig Process 78, 217–231 (2014). https://doi.org/10.1007/s10470-013-0165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0165-0

Keywords

Navigation