Skip to main content
Log in

The design of low voltage/power current-mode sinh-domain filter for biomedical applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes low voltage/power, current-mode second-order Butterworth high-pass filter design in the sinh-domain for biomedical applications. The proposed filter is a continuous-time filter in the companding-class. Sinh-domain filters have the advantages of electronically adjusting the frequency response without the need for non-chip capacitors and full integration on the chip, providing low power consumption and offering a high dynamic range. These advantages of the sinh-domain are beneficial for biomedical applications due to its low power consumption requirement. The proposed filter topology is suitable for eliminating low-frequency interferences of biomedical signals like electrocardiogram (ECG), electroencephalogram (EEG), and electromyogram (EMG). In the realization of this filter, the method of simulation of passive elements with sinh-domain cells is used. The proposed high-pass filter in the 0.05 Hz-20 Hz operating frequency range with a 0.5 V power supply shows the power dissipation of 12.5 nW while its dynamic range exceeds 60 dB. Additionally, no resistances are used in the proposed topology. Simulations have been performed by using OrCAD Capture CIS to demonstrate the performance of the filter. These simulations have been implemented with the TSMC 0.25 µm CMOS process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kircay, A., & Cam, U. (2009). A new 5th-order differential type class-AB log-domain elliptic lowpass filter for video frequency applications. Analog Integrated Circuits and Signal Processing, 60, 221–229.

    Article  Google Scholar 

  2. Kircay, A., & Cam, U. (2008). Differential type class-ab second-order log-domain notch filter. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(5), 1203–1212. https://doi.org/10.1109/TCSI.2008.916458

    Article  MathSciNet  Google Scholar 

  3. Kircay, A., Keserlioglu, M. S., & Adalar, F. Z. (2018). Electronically tunable current-mode third-order square-root-domain filter design. Journal of Circuits, Systems, and Computers, 27(9), 1850136. https://doi.org/10.1142/S0218126618501360

    Article  Google Scholar 

  4. Katsiamis, A. G., & Drakakis, E. M. (2005). Sinh filters in weak inversion CMOS technology. In 48th Midwest Symposium on Circuits and Systems, Covington, KY, Vol. 2, pp. 1637–1640.

  5. Haddad, S. A. P., & Serdijn, W. A. (2006). An ultra low-power class-AB sinh integrator, In SBCCI '06: Proceedings of the 19th annual symposium on Integrated circuits and systems design, pp. 74–79.

  6. Katsiamis, A. G., Ip, H. M. D., Drakakis, E. M., & “A Practical CMOS Companding Sinh Lossy Integrator,”, . (2007). IEEE International Symposium on Circuits and Systems. New Orleans, LA, 2007, 3303–3306.

    Google Scholar 

  7. Glaros, K. N., Katsiamis, A. G., & Drakakis, E. M. (2008). Harmonic vs. geometric mean Sinh integrators in weak inversion CMOS. In 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, pp. 2905–2908.

  8. Kasimis, C., & Psychalinos, C. (2012). Design of sinh-domain filters using complementary operators. International Journal of Circuit Theory and Applications, 40, 1019–1039.

    Article  Google Scholar 

  9. Kongpoon, M. (2013). A low-power and wide dynamic range class-AB Sinh differentiator international symposium on intelligent signal processing and communication systems. Naha, 2013, 684–687. https://doi.org/10.1109/ISPACS.2013.6704636

    Article  Google Scholar 

  10. Khanday, F., & Shah, N. (2013). A low-voltage and low-power sinh-domain universal biquadratic filter for low-frequency applications. Turkies Journal of Electrical Engineering and Computer Sciences, 21, 2205–2217.

    Article  Google Scholar 

  11. Kardoulaki, E. M., et al. (2014). A simulation study of high-order CMOS hyperbolic-sine filters. International Journal of Circuit Theory Applications, 42, 1033–1050.

    Article  Google Scholar 

  12. Pilavaki, E., & Psychalinos, C. (2011). Analog cochlear implant using Sinh-Domain filters. In 2011 20th European Conference on Circuit Theory and Design (ECCTD), Linkoping, pp. 286–289.

  13. Kasimis, C., & Psychalinos, C. (2012). 1.2 V BiCMOS Sinh-domain filters. Circuits Syst Signal Process, 31, 1257–1277.

    Article  MathSciNet  Google Scholar 

  14. Kardoulaki, E. M., Glaros, K. N., Katsiamis, A. G., & Drakakis, E. M. (2009). An 8Hz, 0.1µW, 110+ dBs Sinh CMOS Bessel filter for ECG signals. In 2009 International Conference on Microelectronics - ICM, Marrakech, pp. 14–17.

  15. Kafe, F., Khanday, F. A., & Psychalinos, C. (2014). A 50 mHz Sinh-domain high-pass filter for realizing an ecg signal acquisition system. Circuits Syst Signal Process, 33, 3673–3696.

    Article  Google Scholar 

  16. Bertsias, P., & Psychalinos, C. (2014). Ultra-low voltage sixth-order low pass filter for sensing the T-Wave signal in ECGs. J. Low Power Electron. Appl., 4, 292–303.

    Article  Google Scholar 

  17. Kardoulaki, E. M., et al. (2013). Measured hyperbolic-sine (sinh) CMOS results: A high-order 10 Hz–1 kHz notch filter for 50/60 Hz noise. Microelectronics Journal, 44, 1268–1277.

    Article  Google Scholar 

  18. Kafe, F., & Psychalinos, C. (2014). Realization of companding filters with large time-constants for biomedical applications. Analog Integrated Circuits and Signal Processing, 78, 217–231. https://doi.org/10.1007/s10470-013-0165-0

    Article  Google Scholar 

  19. Smit, H. H., Verton, W. K., & Grimbergen, C. A. (1987). A Low-Cost Multichannel Preamplifier for Physiological Signals. IEEE Transactions on Biomedical Engineering, 34(4), 307–310.

  20. Chu, C.-H.H., & Delp, E. J. (1989). Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators. IEEE Transactions on Biomedical Engineering, 36(2), 262–273. https://doi.org/10.1109/10.16474

    Article  Google Scholar 

  21. Kossmann, C. E., et al. (1967). Recommendations for standardization of leads and of specifications for instruments in electrocardiography and vectorcardiography. A report of the committee on electrocardiography, American heart association. Circulation, 35(3), 583–602.

    Article  Google Scholar 

  22. Dozio, R., & Burke, M. J. (2009). “Second and third order analogue high-pass filters for diagnostic quality ECG,” IET Irish Signals and Systems Conference (ISSC. Dublin, 2009, 1–5.

    Google Scholar 

  23. Jinhua, L., & Yanyi, X. (2016). Circuit design for front-end electrocardiograph. International Journal of Multimedia and Ubiquitous Engineering, 11(5), 345–354.

    Article  Google Scholar 

  24. Chen, H., Seo, S., Ye, D., & Lee, J. (2007). Development of a Tiny Computer-Assisted Wireless EEG Biofeedback System. In ICES 2007: Evolvable Systems: From Biology to Hardware, pp 163–173.

  25. Hu, L., & Zhang, Z. (2019) EEG Signal Processing and Feature Extraction. Springer Nature Singapore Pte Ltd.

  26. Albuquerque, A., Viana, B., Da-Silva, P., & Cagy, M. (2019). Event-Related Synchronization and Desynchronization in Virtual-Reality Ball Interception Protocol. In XXVI Brazilian Congress on Biomedical Engineering.

  27. Wang, J., Tang, L., & Bronlund, J. (2013). Surface EMG Signal Amplification and Filtering. International Journal of Computer Applications.

  28. Merletti, R. (1999). Standards for reporting EMG data. Journal of Electromyography and Kinesiology, 9(1).

  29. Kant, N. A., Dar, M. R., & Khanday, F. A. (2015). An ultra-low-voltage electronic implementation of inertial neuron model with non-monotonous Liao’s activation function. Network Computer Neural, 26(3–4), 116–135.

    Article  Google Scholar 

  30. Kant, N. A., Dar, M. R., Khanday, F. A., & Psychalinos, C. (2017). Ultra-low voltage integrable electronic realization of integer- and fractional-order Liao’s chaotic delayed neuron model. Circuits Syst. Signal Process., 36(12), 4844–4868.

    Article  Google Scholar 

  31. Kontogiannopoulos, N., & Psychalinos, C. (2005). Log-domain filtering by simulating the topology of passive prototypes. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10), 2043–2054. https://doi.org/10.1109/TCSI.2005.852485.2054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kircay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adalar, F.Z., Kircay, A. The design of low voltage/power current-mode sinh-domain filter for biomedical applications. Analog Integr Circ Sig Process 109, 313–322 (2021). https://doi.org/10.1007/s10470-021-01897-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01897-w

Keywords

Navigation