Skip to main content
Log in

Nonlinearity analysis of folded Multi-LSB decided resistor string digital to analog converter

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A theoretical nonlinearity analysis of folded multi-LSB decided resistor string DAC is presented. By the derived theoretical equations, circuit designers can calculate the required resistor mismatch very quickly, thus reducing the design time. The Monte-Carlo simulation results agree well with the theoretical equations and confirm their accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hwang, Y. S., Huang, P. H., Hwang, B. H., & Chen, J. J. (2009). An efficient power reduction technique for CMOS flash analog-to-digital converters. Analog Integrated Circuits and Signal Processing, 61(3), 271–278. doi:10.1007/s10470-009-9309-7.

    Article  Google Scholar 

  2. Liu, D. J., Lin, C. H., Yi, S. C., & Chen, J. J. (2007). A resistor string DAC for video processing. In Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 503–506.

  3. Hamade, A. R. (1978). A single chip all-MOS 8-bit A/D converter. IEEE Journal of Solid-State Circuits, 13(6), 785-791.

    Article  Google Scholar 

  4. Holloway, P. (1984). A trimless 16b digital potentiometer. In IEEE International Solid-State Circuits Conference, pp. 66–67.

  5. Lin, W. R., Chen, C. C., Hsu, C. H., & Lu, N. K. (2006). Folded multi-LSB decided resistor string digital to analog converter. Patent of Republic of China I258267, July 11, 2006.

  6. Chen, C. C., Lu, N. K., Lin, W. R., Hsu, C. H., Huang, Z. Y., & Zeng, Y. Z. (2006). A 10bit folded multi-LSB decided resistor string digital to analog converter. In International Symposium on Intellignet Signal Processing and Communication Systems, pp. 123–126.

  7. Perelman, Y., & Ginosar, R. (2006). A low-power inverted ladder D/A converter. IEEE Transactions on Circuits and Systems-II, 53(6), 497-501.

    Article  Google Scholar 

  8. Chen, C. C., Lu, N. K., Hsu, C. H., & Lee, M. L. (2006). Color-depth improvement using gamma voltage control. SID Symposium Digest of Technical Papers, 37(1), 351-354.

    Article  Google Scholar 

  9. Jacob Baker, R., Li, H. W., & Boyce, D. E. (2005). CMOS circuit design, layout and simulation, 2nd Ed. New York: A John Wiley & Sons Inc.

    Google Scholar 

  10. Shi, C., Wilson, J., & Ismail, M. (2001). Design techniques for improving intrinsic accuracy of resistor string DAC’s. In IEEE International Symposium on Circuits and Systems, pp. I.400–I.403.

  11. Nejati, B., & Larson, L. (2007). Power/Area trade-offs in low-power/low-area unary-R-2R CMOS digital-to-analog converters. In IEEE International Symposium on Circuits and Systems, pp. 1473–1476.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chieh Chen.

Appendices

Appendix A

In this appendix, the required resistor mismatch to meet DNL better than 0.5 LSB for the conventional resistor string DAC is derived. According to the conditions defined by (5), after incorporating resistance and its error value \(\Updelta {R_i}, \) we can obtain the following:

$$ \left[ \frac{\left( {{2^{N - 1}}} \right)R + \sum\nolimits_{i = 1}^{{2^{N - 1}}} {\Updelta {R_{N,i}}} }{{{2^N}R + \sum\limits_{i = 1}^{{2^N}} {\Updelta {R_{N,i}}} }} - \frac{\left( {{2^{N - 1}} - 1} \right)R + \sum\nolimits_{i = 1}^{{2^{N - 1}} - 1} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{{2^N}} {\Updelta {R_{N,i}}} } - \frac{1}{2^N}\right] \cdot {V_{REF}} \le \frac{V_{REF}}{2^{N + 1}} $$
(29)

where N is the bit numbers of conventional resistor string DAC. \(\Updelta{R_{N,i}}\) is resistor mismatch error of unit resistor in the resistor string.

By re-formulating (29), we can obtain:

$$ \left( \frac{\frac{1}{2} + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^{N - 1}}} {\frac{\Updelta {R_{N,i}}}{R}} }{1 + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^N}} {\frac{\Updelta {R_{N,i}}}{R}} } - \frac{\frac{1}{2} - \frac{1}{2^N} + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^{N - 1}} - 1} {\frac{\Updelta {R_{N,i}}}{R}} }{1 + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^N}} {\frac{\Updelta {R_{N,i}}}{R}} } - \frac{1}{2^N}\right) \cdot {V_{REF}} \le \frac{V_{REF}}{2^{N + 1}} $$
(30)

We can then apply Taylor’s series approximation again:

$$ \left[ \left(\frac{1}{2} + \frac{1}{2^N}\sum\limits_{i = 1}^{{2^{N - 1}}} \frac{\Updelta {R_{N,i}}}{R}\right)\left(1 - \frac{1}{2^N}\sum\limits_{i = 1}^{{2^N}} \frac{\Updelta {R_{N,i}}}{R} \right) - \left(\frac{1}{2} - \frac{1}{2^N} \right. +\left. \frac{1}{2^N}\sum\limits_{i = 1}^{{2^{N - 1}} - 1} \frac{{\Updelta {R_{N,i}}}}{R}\right)\left(1 - \frac{1}{2^N}\sum\limits_{i = 1}^{2^N} \frac{\Updelta {R_{N,i}}}{R} \right) - \frac{1}{2^N}\right] \cdot {V_{REF}} \le \frac{V_{REF}}{2^{N + 1}} $$
(31)

After combining and re-formulating the above formulas, we can obtain:

$$ \left( \frac{{2^N} - 1}{2^{2N}}\sum\limits_{i = {2^{N - 1}}}^{{2^{N - 1}}} {\frac{\Updelta {R_{N,i}}}{R}} - \frac{1}{2^{2N}}\sum\limits_{i = 1}^{{2^{N - 1}} - 1} {\frac{\Updelta {R_{N,i}}}{R} } -\right. \left.\frac{1}{{{2^{2N}}}}\sum\limits_{i = {2^{N - 1}} + 1}^{{2^N}} {\frac{\Updelta {R_{N,i}}}{R}} \right) \cdot {V_{REF}} \le \frac{V_{REF}}{2^{N + 1}} $$
(32)

And re-write (32) as a probability inequality

$$ P\left\{ \left(\frac{{2^N} - 1}{2^{2N}}\sum\limits_{i = {2^{N - 1}}}^{2^{N - 1}} {\Updelta {R_{N,i}}} - \frac{1}{2^{2N}}\sum\limits_{i = 1}^{{2^{N - 1}} - 1} {\Updelta {R_{N,i}} } -\right. \left.\frac{1}{2^{2N}}\sum\limits_{i = {2^{N - 1}} + 1}^{2^N} {\Updelta {R_{N,i}}} \right) \le \frac{R}{2^{N + 1}}\right\} \ge Y $$
(33)

Define X as follows:

$$ X \equiv \frac{{2^N} - 1}{2^{2N}}\sum\limits_{i = {2^{N - 1}}}^{{2^{N - 1}}} {\Updelta {R_{N,i}}} - \frac{1}{2^{2N}}\sum\limits_{i = 1}^{{2^{N - 1}} - 1} {\Updelta {R_{N,i}} } - \frac{1}{2^{2N}}\sum\limits_{i = {2^{N - 1}} + 1}^{{2^N}} {\Updelta {R_{N,i}}} $$
(34)

Then, the variance of X can be expressed as:

$$ \sigma _X^2 \equiv \frac{{\sigma _{\Updelta R}^2}}{2^{4N}}\left[{\left({2^N} - 1\right)^2}\sum\limits_{i = {2^{N - 1}}}^{2^{N - 1}} 1 + \sum\limits_{i = 1}^{{2^{N - 1}} - 1} {1 + } \sum\limits_{i = {2^{N - 1}} + 1}^{2^N} 1 \right] $$
(35)

By re-formulating (35), we can obtain:

$$ {\sigma _X} \equiv \frac{\sigma _{\Updelta R}}{2^{2N}}\sqrt{{2^{2N}} - {2^N}} $$
(36)

Using (34) and the standard normal distribution function, \(\Upphi, \) (33) can be rewritten as:

$$ P\left\{ {X \le \frac{R}{2^{N + 1}}} \right\} = \Upphi \left({\frac{R \mathord{\left/{ {{2^{N + 1}}}} \right. }}{\sigma _X}}\right) \ge Y $$
(37)

Replacing (36) in (37) and applying the inverse standard normal distribution function, (37) can be expressed as:

$$ {\Upphi ^{ - 1}}\left( Y \right)\frac{\sigma _{\Updelta R}}{R} \le \frac{2^{2N}}{{2^{N + 1}}\sqrt {{2^{2N}} - {2^N}} } $$
(38)

Appendix B

The required resistor mismatch to meet INL better than 0.5 LSB for the conventional resistor string DAC based on ideal reference line is derived in this appendix. According to the conditions defined by (19), after incorporating resistance and its error value \(\Updelta {R_i}, \) we can obtain the following:

$$ \left[ \frac{\left( {2^{N - 1}} \right)R + \sum\nolimits_{i = 1}^{2^{N - 1}} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{{2^N}} {\Updelta {R_{N,i}}} } - \frac{1}{2}\right] \cdot {V_{REF}} \le \frac{1}{2^{N + 1}} \cdot {V_{REF}} $$
(39)

By re-formulating (39), we can obtain:

$$ \left( \frac{\frac{1}{2} + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^{N - 1}}} {\frac{\Updelta {R_{N,i}}}{R}} }{1 + \frac{1}{2^N}\sum\nolimits_{i = 1}^{2^N} {\frac{\Updelta {R_{N,i}}}{R}} } - \frac{1}{2}\right) \cdot {V_{REF}} \le \frac{1}{2^{N + 1}} \cdot {V_{REF}} $$
(40)

We can then apply Taylor’s series approximation again:

$$ \left[ \left(\frac{1}{2} + \frac{1}{2^N}\sum\limits_{i = 1}^{2^{N - 1}} \frac{\Updelta {R_{N,i}}}{R}\right) \cdot \left(1 - \frac{1}{2^N}\sum\limits_{i = 1}^{2^N} \frac{\Updelta {R_{N,i}}}{R} \right) - \frac{1}{2}\right] \cdot {V_{REF}} \le \frac{1}{2^{N + 1}} \cdot {V_{REF}} $$
(41)

After combining and re-formulating the above formulas, we can obtain:

$$ \left( \frac{1}{2^{N + 1}}\sum\limits_{i = 1}^{2^{N - 1}} {\frac{\Updelta {R_{N,i}}}{R}} - \frac{1}{2^{N + 1}}\sum\limits_{i = {2^{N - 1}} + 1}^{2^N} {\frac{\Updelta {R_{N,i}}}{R}} \right) \cdot {V_{REF}} \le \frac{V_{REF}}{2^{N + 1}} $$
(42)

And re-write (42) as a probability inequality

$$ P\left\{ \left(\frac{1}{2^{N + 1}}\sum\limits_{i = 1}^{2^{N - 1}} {\Updelta {R_{N,i}}} - \frac{1}{2^{N + 1}}\sum\limits_{i = {2^{N - 1}} + 1}^{2^N} {\Updelta {R_{N,i}}} \right) \le \frac{R}{2^{N + 1}}\right\} \ge Y $$
(43)

Define X as follows:

$$ X \equiv \frac{1}{2^{N + 1}}\sum\limits_{i = 1}^{2^{N - 1}} {\Updelta {R_{N,i}}} - \frac{1}{2^{N + 1}}\sum\limits_{i = {2^{N - 1}} + 1}^{2^N} {\Updelta {R_{N,i}}} $$
(44)

Then, the variance of X can be expressed as:

$$ \sigma _X^2 = \frac{\sigma _{\Updelta R}^2}{2^{2(N + 1)}}\left[\sum\limits_{i = 1}^{2^{N - 1}} 1 + \sum\limits_{i = {2^{N - 1}} + 1}^{2^N} 1 \right] $$
(45)

By re-formulating (45), we can obtain:

$$ \sigma _X = \frac{\sigma _{\Updelta R}}{2^{N + 1}}\sqrt{2^N} $$
(46)

Using (44) and the standard normal distribution function, \(\Upphi, \) (43) can be rewritten as:

$$ P\left\{ {X \le \frac{R}{2^{N + 1}}} \right\} = \Upphi \left({\frac{R \mathord{\left/ { {{2^{N + 1}}}} \right.}}{\sigma _X}}\right) \ge Y $$
(47)

Replacing (46) in (47) and applying the inverse standard normal distribution function, (47) can be expressed as:

$$ {\Upphi ^{ - 1}}\left( Y \right)\frac{\sigma _{\Updelta R}}{R} \le \frac{1}{\sqrt {2^N} } $$
(48)

Appendix C

The required resistor mismatch to meet INL better than 0.5 LSB for the conventional resistor string DAC based on “end-point” reference line is derived in this appendix. The V LSB,Ref can be written as:

$$ {V_{LSB, Ref}} = \frac{{V_O}\left( {11 \cdots 11} \right)}{{2^N} - 1} = \frac{\left( {{2^N} - 1} \right)R + \sum\nolimits_{i = 1}^{{2^N} - 1} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{2^N} {\Updelta {R_{N,i}}} } \cdot \frac{1}{{2^N} - 1} \cdot {V_{REF}} $$
(49)

Therefore,

$$ {V_{O,Ref}}(10\cdots 00) = {V_{LSB,Ref}} \cdot ({2^{N - 1}}) = \frac{\left( {{2^N} - 1} \right)R + \sum\nolimits_{i = 1}^{{2^N} - 1} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{2^N} {\Updelta {R_{N,i}}} } \cdot \frac{2^{N - 1}}{{2^N} - 1} \cdot {V_{REF}} $$
(50)

Thus, we can rewrite the equation as follows to achieve INL better than 0.5 LSB.

$$ \left[ \frac{\left( {2^{N - 1}} \right)R + \sum\nolimits_{i = 1}^{2^{N - 1}} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{2^N} {\Updelta {R_{N,i}}} } - \frac{\left( {{2^N} - 1} \right)R + \sum\nolimits_{i = 1}^{{2^N} - 1} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{2^N} {\Updelta {R_{N,i}}} } \cdot \frac{2^{N - 1}}{{2^N} - 1}\right] \cdot {V_{REF}} \le \frac{1}{2} \cdot \frac{\left( {{2^N} - 1} \right)R + \sum\nolimits_{i = 1}^{{2^N} - 1} {\Updelta {R_{N,i}}} }{{2^N}R + \sum\nolimits_{i = 1}^{2^N} {\Updelta {R_{N,i}}} } \cdot \frac{1}{{2^N} - 1} \cdot {V_{REF}} $$
(51)

By re-formulating (51), we can obtain:

$$ \left[ \frac{{\frac{1}{2}} + \frac{1}{2^N}\sum\nolimits_{i = 1}^{2^{N - 1}} {\frac{\Updelta {R_{N,i}}}{R}} }{1 + \frac{1}{2^N}\sum\nolimits_{i = 1}^{2^N} {\frac{\Updelta {R_{N,i}}}{R}} } - \frac{\left( {1 - \frac{1}{2^N}} \right) + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^N} - 1} {\frac{\Updelta {R_{N,i}}}{R}} }{1 + \frac{1}{2^N}\sum\nolimits_{i = 1}^{2^N} {\frac{\Updelta {R_{N,i}}}{R}} } \cdot \frac{2^{N - 1}}{{2^N} - 1}\right] \cdot {V_{REF}} \le \frac{1}{2} \cdot \frac{\left( {1 - \frac{1}{2^N}} \right) + \frac{1}{2^N}\sum\nolimits_{i = 1}^{{2^N} - 1} {\frac{\Updelta {R_{N,i}}}{R}} }{1 + \frac{1}{2^N}\sum\nolimits_{i = 1}^{2^N} {\frac{\Updelta {R_{N,i}}}{R}} } \cdot \frac{1}{{2^N} - 1} \cdot {V_{REF}} $$
(52)

We can then apply Taylor’s series approximation again:

$$ \left[ \left( {\frac{1}{2}} + \frac{1}{2^N}\sum\limits_{i = 1}^{2^{N - 1}} \frac{\Updelta {R_{N,i}}}{R}\right) \cdot \left(1 - \frac{1}{2^N}\sum\limits_{i = 1}^{2^N} \frac{\Updelta {R_{N,i}}}{R} \right) - \left[\left( {1 - \frac{1}{2^N}} \right) + \frac{1}{2^N}\sum\limits_{i = 1}^{{2^N} - 1} \frac{\Updelta {R_{N,i}}}{R}\right] \cdot \left(1 - \frac{1}{2^N}\sum\limits_{i = 1}^{2^N} \frac{\Updelta {R_{N,i}}}{R} \right) \cdot \frac{2^{N - 1}}{{2^N} - 1}\right] \cdot {V_{REF}} \le \frac{1}{2} \cdot \left[\left( {1 - \frac{1}{2^N}} \right) + \frac{1}{2^N}\sum\limits_{i = 1}^{{2^N} - 1} \frac{\Updelta {R_{N,i}}}{R} \right] \cdot \left[1 - \frac{1}{2^N}\sum\limits_{i = 1}^{2^N} \frac{\Updelta {R_{N,i}}}{R} \right] \cdot \frac{1}{{2^N} - 1} \cdot {V_{REF}} $$
(53)

After combining and re-formulating the above formulas, we can obtain:

$$ \left[ \frac{{2^{N - 1}} - {2^{ - \left(N + 1\right)}} - 1}{{2^N} - 1}\frac{1}{2^N}\sum\limits_{i = 1}^{2^{N - 1}} {\frac{\Updelta {R_{N,i}}}{R}} - \left(\frac{1}{2^N}\sum\limits_{i = {2^{N - 1}} + 1}^{{2^N} - 1} {\frac{\Updelta {R_{N,i}}}{R}} \right) \cdot \frac{{2^{N - 1}} - {2^{ - \left(N + 1\right)}}}{{2^N} - 1} + \left(\frac{1}{2^N}\sum\limits_{i = {2^N}}^{2^N} {\frac{\Updelta {R_{N,i}}}{R}} \right) \cdot \frac{{2^{ - 1}} - {2^{ - (N + 1)}}}{{2^N} - 1}\right] \cdot {V_{REF}} \le \frac{V_{REF}}{2^{N + 1}} $$
(54)

And re-write (54) as a probability inequality

$$ P\left\{ \frac{{2^{N - 1}} - {2^{ - \left(N + 1\right)}} - 1}{{2^N} - 1}\frac{1}{2^N}\sum\limits_{i = 1}^{2^{N - 1}} {\Updelta {R_{N,i}}} - \left(\frac{1}{2^N}\sum\limits_{i = {2^{N - 1}} + 1}^{{2^N} - 1} {\Updelta {R_{N,i}}} \right) \cdot \frac{{2^{N - 1}} - {2^{ - \left(N + 1\right)}}}{{2^N} - 1} + \left(\frac{1}{2^N}\sum\limits_{i = {2^N}}^{2^N} {\Updelta {R_{N,i}}} \right) \cdot \frac{{2^{ - 1}} - {2^{ - \left(N + 1\right)}}}{{2^N} - 1} \le \frac{R}{2^{N + 1}}\right\} \ge Y $$
(55)

Define X as follows:

$$ X \equiv \frac{{2^{N - 1}} - {2^{ - \left(N + 1\right)}} - 1}{{2^N} - 1}\frac{1}{2^N}\sum\limits_{i = 1}^{2^{N - 1}} {\Updelta {R_{N,i}}} - \left(\frac{1}{2^N}\sum\limits_{i = {2^{N - 1}} + 1}^{{2^N} - 1} {\Updelta {R_{N,i}}} \right) \cdot \frac{{2^{N - 1}} - {2^{ - (N + 1)}}}{{2^N} - 1} + \left(\frac{1}{2^N}\sum\limits_{i = {2^N}}^{2^N} {\Updelta {R_{N,i}}} \right) \cdot \frac{{2^{ - 1}} - {2^{ - \left(N + 1\right)}}}{{2^N} - 1} $$
(56)

Then, the variance of X can be expressed as:

$$ \sigma _X^2 = \frac{\sigma _{\Updelta R}^2}{{\left[\left({2^N} - 1\right){2^N}\right]}^2}\left[ { \left({2^{N - 1}} - {2^{ - \left(N + 1\right)}} - 1\right)^2}\sum\limits_{i = 1}^{2^{N - 1}} 1 + {\left({2^{N - 1}} - {2^{ - \left(N + 1\right)}}\right)^2}\sum\limits_{i = {2^{N - 1}} + 1}^{{2^N} - 1} 1 + {\left({2^{ - 1}} - {2^{ - \left(N + 1\right)}}\right)^2}\sum\limits_{i = {2^N}}^{2^N} 1 \right] $$
(57)

By re-formulating (57), we can obtain:

$$ \sigma _X = \frac{\sigma _{\Updelta R}}{\left[\left({2^N} - 1\right){2^N}\right]}\left[{\left({2^{N - 1}} - {2^{ - \left(N + 1\right)}} - 1\right)^2}\left({2^{N - 1}}\right) +\right. \left. {\left({2^{N - 1}} - {2^{ - \left(N + 1\right)}}\right)^2}\left({2^{N - 1}} - 1\right) + {\left({2^{ - 1}} - {2^{ - \left(N + 1\right)}}\right)^2}\right]^{\frac{1}{2}} $$
(58)

Using (56) and the standard normal distribution function, \(\Upphi, \) (55) can be rewritten as:

$$ P\left\{ {X \le \frac{R}{2^{N + 1}}} \right\} = \Upphi \left( {\frac{R \mathord{\left/{ {{2^{N + 1}}}} \right. }}{\sigma _X}} \right) \ge Y $$
(59)

Replacing (58) in (59) and applying the inverse standard normal distribution function, (59) can be expressed as (60):

$$ {\Upphi ^{ - 1}}\left( Y \right)\frac{\sigma _{\Updelta R}}{R} \le \frac{{2^N} - 1}{2} \cdot \frac{1}{\sqrt {{{({2^{N - 1}} - {2^{ - (N + 1)}} - 1)}^2}({2^{N - 1}}) + {{({2^{N - 1}} - {2^{ - (N + 1)}})}^2}({2^{N - 1}} - 1) + {{({2^{ - 1}} - {2^{ - (N + 1)}})}^2}}} $$
(60)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Lu, NK. & Zeng, YZ. Nonlinearity analysis of folded Multi-LSB decided resistor string digital to analog converter. Analog Integr Circ Sig Process 70, 357–367 (2012). https://doi.org/10.1007/s10470-011-9711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9711-9

Keywords

Navigation