Skip to main content
Log in

Structures Computable in Polynomial Time. II

  • Published:
Algebra and Logic Aims and scope

We consider a new approach to investigating categoricity of structures computable in polynomial time. The approach is based on studying polynomially computable stable relations. It is shown that this categoricity is equivalent to the usual computable categoricity for computable Boolean algebras with computable set of atoms, and for computable linear orderings with computable set of adjacent pairs. Examples are constructed which show that this does not always hold. We establish a connection between dimensions based on computable and polynomially computable stable relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Alaev, “Structures computable in polynomial time. I,” Algebra and Logic, 55, No. 6, 421-435 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. S. Goncharov, “The problem of the number of nonautoequivalent constructivizations,” Algebra and Logic, 19, No. 6, 401-414 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras,” J. Symb. Log., 46, No. 3, 572-594 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. B. Remmel, “Recursively categorical linear orderings,” Proc. Am. Math. Soc., 83, No. 2, 387-391 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. S. Goncharov and V. D. Dzgoev, “Autostability of models,” Algebra and Logic, 19, No. 1, 28-36 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. E. Alaev, “Existence and uniqueness of structures computable in polynomial time,” Algebra and Logic, 55, No. 1, 72-76 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Cenzer and J. B. Remmel, “Complexity and categoricity,” Inf. Comput., 140, No. 1, 2-25 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. I. Latkin, “Polynomial non-autostability. Algebraic approach,” in Logical Methods in Programming, Vychislitel’nye Systemy, 133, Sobolev Institute of Mathematics, Novosibirsk (1990), pp. 14-37.

  9. S. S. Goncharov, “Algorithmic dimension of Abelian groups,” Proc. 17th All-Union Alg. Conf., Part 2, Minsk (1983).

  10. B. M. Khusainov, “Algorithmic degree of unars,” Algebra and Logic, 27, No. 4, 301-312 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. O. V. Kudinov, “Algebraic dependences and reducibilities of constructivizations in universal domains,” Tr. Inst. Mat. SO RAN, 25, 74-81 (1993).

    MATH  Google Scholar 

  12. S. T. Fedoryaev, “Countability of widths of algebraic reducibility structures for models in some classes,” Sib. Adv. Math., 3, No. 2, 81-103 (1993).

    MathSciNet  MATH  Google Scholar 

  13. S. T. Fedoryaev, “Recursively inconsistent algorithmic problems on 1-constructivizable relatively complemented distributive lattices,” Algebra and Logic, 34, No. 6, 371-378 (1995).

    Article  MathSciNet  Google Scholar 

  14. V. A. Uspensky and A. L. Semenov, “Algorithm theory: Contributions and applications,” in Algorithms in Modern Mathematics and Its Applications [in Russian], Part 1, Computer Center SO AN SSSR, Novosibirsk (1982), pp. 99-342.

  15. V. A. Uspensky and A. L. Semenov, Algorithm Theory: Contributions and Applications, Nauka, Moscow (1987).

    Google Scholar 

  16. S. T. Fedoryaev, “Constructivizable models with a linear structure of algebraic reducibility,” Mat. Zametki, 48, No. 6, 106-111 (1990).

    MathSciNet  MATH  Google Scholar 

  17. S. T. Fedoryaev, “Some properties of algebraic reducibility of constructivizations,” Algebra and Logic, 29, No. 5, 395-405 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Cenzer and J. Remmel, “Polynomial-time versus recursive models,” Ann. Pure Appl. Log., 54, No. 1, 17-58 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Moses, “Relations intrinsically recursive in linear orders,” Z. Math. Log. Grund. Math., 32, No. 5, 467-472 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. G. Pinus, “Conditional terms and identities on universal algebras,” Vych. Sist., 156, 59-78 (1996).

    MathSciNet  MATH  Google Scholar 

  21. A. G. Pinus, “Inner homomorphisms and positive-conditional terms,” Algebra and Logic, 40, No. 2, 87-95 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Alaev.

Additional information

Supported by RFBR, project No. 17-01-00247.

Translated from Algebra i Logika, Vol. 56, No. 6, pp. 651-670, November-December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaev, P.E. Structures Computable in Polynomial Time. II. Algebra Logic 56, 429–442 (2018). https://doi.org/10.1007/s10469-018-9465-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-018-9465-x

Keywords

Navigation