Skip to main content
Log in

Algebraic geometry over algebraic structures. IV. Equational domains and codomains

  • Published:
Algebra and Logic Aims and scope

Abstract

We introduce and study equational domains and equational codomains. Informally, an equational domain is an algebra every finite union of algebraic sets over which is an algebraic set; an equational codomain is an algebra every proper finite union of algebraic sets over which is not an algebraic set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. Daniyarova, A. Myasnikov, and V. Remeslennikov, “Unification theorems in algebraic geometry,” in Aspects of Infinite Groups, Algebra Discr. Math. (Hackensack), 1, World Sci., Hackensack, NJ (2008), pp. 80–111.

  2. É. Daniyarova, A. Miasnikov, and V. Remeslennikov, “Algebraic geometry over algebraic structures. II: Foundations,” submitted to J. Alg.; arXiv:1002.3562v2 [math.AG].

  3. É. Daniyarova, A. Miasnikov, and V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness,” submitted to South. Asian Bull. Math.; arXiv:1002.4243v2 [math.AG].

  4. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York (1977).

    MATH  Google Scholar 

  5. I. R. Shafarevich, Foundations of Algebraic Geometry [in Russian], MCNMO, Moscow (2007).

    Google Scholar 

  6. G. Baumslag, A. Myasnikov, and V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory,” J. Alg., 219, No. 1, 16–79 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Baumslag, A. Myasnikov, and V. Remeslennikov, “Discriminating and co-discriminating groups,” J. Group Th., 3, No. 4, 467–479 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. A. Gorbunov, Algebraic Theory of Quasivarieties, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).

    Google Scholar 

  9. É. Yu. Daniyarova and V. N. Remeslennikov, “Bounded algebraic geometry over a free Lie algebra,” Algebra Logika, 44, No. 3, 269–304 (2005).

    MathSciNet  MATH  Google Scholar 

  10. I. V. Chirkov and M. A. Shevelin, “Zero divisors in amalgamated free products of Lie algebras,” Sib. Mat. Zh., 45, No. 1, 229–238 (2004).

    MathSciNet  MATH  Google Scholar 

  11. V. N. Latyshev, “On zero divisors in finite-dimensional anticommutative algebras,” Izv. Vyssh. Uch. Zav., Mat., No. 2, 100–108 (1961).

  12. V. T. Filippov, “Prime Mal’tsev algebras,” Mat. Zametki, 31, No. 5, 669–678 (1982).

    MathSciNet  Google Scholar 

  13. K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Rings That Are Nearly Associative [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  14. S. V. Pchelintsev, “Prime algebras and absolute zero divisors,” Izv. Ross. Akad. Nauk, Mat., 50, No. 1, 79–100 (1986).

    MathSciNet  MATH  Google Scholar 

  15. I. P. Shestakov, “Absolute zero-divisors and radicals of finitely generated alternative algebras,” Algebra Logika, 15, No. 5, 585–602 (1976).

    MATH  Google Scholar 

  16. M. Casals-Ruiz and I. Kazachkov, “Elements of algebraic geometry and the positive theory of partially commutative groups,” Can. J. Math., 62, No. 3, 481–519 (2010); arXiv:0710.4077v2 [math.GR].

  17. A. Yu. Ol’shanskii, “On residualing homomorphisms and G-subgroups of hyperbolic groups,” Int. J. Alg. Comput., 3, No. 4, 365–409 (1993).

    Article  MathSciNet  Google Scholar 

  18. A. Myasnikov and V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations,” J. Alg., 234, No. 1, 225–276 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Morar and A. Shevlyakov, “Algebraic geometry over additive positive monoids. Systems of coefficient free equations,” in Combinatorial and Geometric Group Theory, Dortmund Carleton Conf. (2010), pp. 261–278.

  20. A. N. Shevlyakov, “Algebraic geometry over natural numbers. The classification of coordinate monoids,” Groups, Complex. Cryptol., 2, No. 1, 91–111 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. Yu. Daniyarova.

Additional information

Supported by RFBR (project No. 08-01-00067).

Translated from Algebra i Logika, Vol. 49, No. 6, pp. 715-756, November-December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniyarova, É.Y., Myasnikov, A.G. & Remeslennikov, V.N. Algebraic geometry over algebraic structures. IV. Equational domains and codomains. Algebra Logic 49, 483–508 (2011). https://doi.org/10.1007/s10469-011-9112-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-011-9112-2

Keywords

Navigation