Skip to main content
Log in

Polynomial Representations and Categorifications of Fock Space

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

The rings of symmetric polynomials form an inverse system whose limit, the ring of symmetric functions, is the model for the bosonic Fock space representation of the affine Lie algebra. We show that this limit naturally carries an action of the affine Lie algebra (in the sense of Rouquier), thereby obtaining a family of categorifications of the bosonic Fock space representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J., Frenkel, I., Khovanov, M.: A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl 2) via projective and Zuckerman functors. Selecta Math. 2(5), 199–241 (1999)

    Article  MathSciNet  Google Scholar 

  2. Brundan, J., Kleshchev, A.: Modular Littlewood-Richardson coefficients. Math. Z. 232(2), 287–320 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brundan, J., Kleshchev, A.: On translation functors for general linear and symmetric groups. Proc. Lond. Math. Soc. (3) 80(1), 75–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and sl 2-categorification. Ann. Math. (2) 167(1), 245–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedlander, E.M.: Lectures on the cohomology of finite group schemes. http://www.math.northwestern.edu/~eric/lectures/nantes/nantes-final.pdf Accessed 15 June 2012

  6. Donkin, S.: On Schur algebras and related algebras. II. J. Algebra 111(2), 354–364 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedlander, E.M., Suslin, A.: Cohomology of finite group schemes over a field. Invent. Math 127(2), 209–270 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Green, J.A.: Polynomial representations of GL n . Second corrected and augmented edition. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. In: Lecture Notes in Mathematics, vol. 830. Springer, Berlin (2007)

  9. Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants. In: Graduate Texts in Mathematics, vol. 255. Springer, Dordrecht (2009)

    Google Scholar 

  10. Hong, J., Touzé, A., Yacobi, O.: Polynomial functors and categorification of Fock space. www.math.toronto.edu/oyacobi/wallachpaper.pdf Accessed 15 June 2012

  11. Hong, J., Yacobi, O.: Polynomial functors and categorifications of Fock space II www.math.toronto.edu/oyacobi/HYII.pdf (submitted)

  12. Jantzen, J.C.: Representations of algebraic groups. Second edition. In: Mathematical Surveys and Monographs, vol. 107. American Mathematical Society, Providence, RI (2003)

  13. Kac, V.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  14. Kleshchev, A.: Linear and projective representations of symmetric groups. In: Cambridge Tracts in Mathematics, vol. 163. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  15. Lascoux, A., Leclerc, B., Thibon, J.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Commun. Math. Phys. 181(1), 205–263 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1995)

  17. Martin, S.: Schur algebras and representation theory. In: Cambridge Tracts in Mathematics, vol. 112. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  18. Misra, K.C., Miwa, T.: Crystal base of the basic representation of \(U_{q}(\hat{\mathfrak{sl}}_n)\). Commun. Math. Phys. 134, 79–88 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023 [math.RT] (preprint)

  20. Shan, P.: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. arXiv:0811.4549 [math.RT] (preprint)

  21. Stroppel, C., Webster, B.: Quiver Schur algebras and q-Fock space. arXiv:1110.1115 [math.RA] (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Yacobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Yacobi, O. Polynomial Representations and Categorifications of Fock Space. Algebr Represent Theor 16, 1273–1311 (2013). https://doi.org/10.1007/s10468-012-9356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-012-9356-0

Keywords

Mathematics Subject Classifications (2010)

Navigation