Skip to main content
Log in

Whittaker Categories, Properly Stratified Categories and Fock Space Categorification for Lie Superalgebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study various categories of Whittaker modules over a type I Lie superalgebra realized as cokernel categories that fit into the framework of properly stratified categories. These categories are the target of the Backelin functor \(\Gamma _\zeta \). We show that these categories can be described, up to equivalence, as Serre quotients of the BGG category \(\mathcal O\) and of certain singular categories of Harish-Chandra \(({\mathfrak {g}},{\mathfrak {g}}_{{\bar{0}}})\)-bimodules. We also show that \(\Gamma _\zeta \) is a realization of the Serre quotient functor. We further investigate a q-symmetrized Fock space over a quantum group of type A and prove that, for general linear Lie superalgebras our Whittaker categories, the functor \(\Gamma _\zeta \) and various realizations of Serre quotients and Serre quotient functors categorify this q-symmetrized Fock space and its q-symmetrizer. In this picture, the canonical and dual canonical bases in this q-symmetrized Fock space correspond to tilting and simple objects in these Whittaker categories, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We emphasize that the notation \(\mathcal B_\nu \) used here has different meaning compared to the same notation used in [Chi1], but it agrees with the one defined in [Chi2]. In [Chi1], \(\mathcal B_\nu \) is used to denote the full subcategory of \(\mathcal B\) consisting of modules X satisfying \(X\ker (\chi _\nu ^{{\mathfrak {g}}_{{\bar{0}}}})^n=0\) for \(n\gg 0\).

  2. The notations \(\mathcal N\) and \(\mathcal N_{{\bar{0}}}\) used here are different from [Chi1, Chi2], where the corresponding categories are denoted by \(\widetilde{\mathcal N}\) and \(\mathcal N\).

  3. In the present paper, we use the 0-subscript convention to denote the respective \({\mathfrak {g}}_{{\bar{0}}}\)-modules. We emphasize that the notations \(M(\lambda ,\zeta ), M_0(\lambda ,\zeta )\) and \(L(\lambda ,\zeta )\) correspond to the notations \({\widetilde{M}}(\lambda ,\zeta ), M(\lambda ,\zeta )\) and \({\widetilde{L}}(\lambda ,\zeta )\) used in [Chi1, Chi2].

References

  1. Arias, J.C., Backelin, E.: Projective and Whittaker functors on category \({\cal{O} }\). J. Algebra 574, 154–171 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Adamović, D., Lü, R., Zhao, K.: Whittaker modules for the affine Lie algebra \(A_1^{(1)}\). Adv. Math. 289, 438–479 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Andersen, H.H., Mazorchuk, V.: Category \({\cal{O} }\) for quantum groups. J. Eur. Math. Soc. (JEMS) 17(2), 405–431 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Arkhipov, S.: Semi-infinite cohomology of associative algebras and bar duality. Int. Math. Res. Not. 1997, 833–863 (1996)

    MATH  Google Scholar 

  5. Andersen, H.H., Stroppel, C.: Twisting functors on \({{\rm Co}}\). Represent. Theory 7, 681–699 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Backelin, E.: Representation of the category \({\cal{O} }\) in Whittaker categories. Int. Math. Res. Not. 4, 153–172 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Bao, H.: Kazhdan–Lusztig theory of super type \(D\) and quantum symmetric pairs. Represent. Theory 21, 247–276 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Beilinson, A., Bernstein, J.: Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math. 292, 15–18 (1981)

    MathSciNet  MATH  Google Scholar 

  9. Bagci, I., Christodoulopoulou, K., Wiesner, E.: Whittaker Categories and Whittaker modules for Lie superalgebras. Commun. Algebra 42(11), 4932–4947 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Bell, A., Farnsteiner, R.: On the theory of Frobenius extensions and its application to Lie superalgebras. Trans. Am. Math. Soc. 335(1), 407–424 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Bernstein, J.N., Gelfand, S.I.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41(2), 245–285 (1980)

    MathSciNet  MATH  Google Scholar 

  12. Bernštein, I., Gel’fand, I., Gel’fand, S.: Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules. Lie groups and their representations (Proc. Summer School, Bolyai Janos Math. Soc., Budapest, 1971), pp. 21–64. Halsted, New York (1975)

  13. Bernštein, I., Gel’fand, I., Gel’fand, S.: A certain category of \({\mathfrak{g} }\)-modules. Funkcional. Anal. i Priložen. 10(2), 1–8 (1976)

    MathSciNet  Google Scholar 

  14. Beilinson, A.A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9(2), 473–527 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Brundan, J., Goodwin, S., Kleshchev, A.: Highest weight theory for finite W-algebras. Int. Math. Res. Not. Art. ID mn051 (2008)

  16. Brylinski, J., Kashiwara, M.: Kazhdan–Lusztig conjecture and holonomic systems. Invent. Math. 64(3), 387–410 (1981)

    MathSciNet  MATH  ADS  Google Scholar 

  17. Brundan, J., Losev, I., Webster, B.: Tensor product categorifications and the super Kazhdan–Lusztig conjecture. Int. Math. Res. Not. 20, 6329–6410 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Batra, P., Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 215(7), 1552–1568 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Brown, A., Romanov, A.: Contravariant pairings between standard Whittaker modules and Verma modules. Preprint arXiv:2106.10029

  20. Brundan, J., Goodwin, S.M.: Whittaker coinvariants for \(GL(m|n)\). Adv. Math. 347, 273–339 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Brown, A.: Arakawa–Suzuki functors for Whittaker modules. J. Algebra 538, 261–289 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Brundan, J.: Tilting modules for Lie superalgebras. Commun. Algebra 32, 2251–2268 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Brundan, J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \({\mathfrak{gl} }(m|n)\). J. Am. Math. Soc. 16, 185–231 (2003)

    MATH  Google Scholar 

  24. Brundan, J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \({\mathfrak{q} }(n)\). Adv. Math. 182, 28–77 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Brundan, J.: Representations of the general linear Lie superalgebra in the BGG category \({\cal{O} }\). In: Mason, G., et al. (eds.) Developments and Retrospectives in Lie Theory: Algebraic Methods: Developments in Mathematics, vol. 38, pp. 71–98. Springer, New York (2014)

    Google Scholar 

  26. Brundan, J., Stroppel, C.: Semi-infinite highest weight categories. Mem. Am. Math. Soc. (to appear). arXiv:1808.08022

  27. Bao, H., Wang, W.: A new approach to Kazhdan–Lusztig theory of type B via quantum symmetric pairs. Asterisque 402 (2018)

  28. Chen, C.-W., Coulembier, K.: The primitive spectrum and category \({\cal{O} }\) for the periplectic Lie superalgebra. Can. J. Math. 72(3), 625–655 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Chen, C.-W., Cheng, S.-J., Coulembier, K.: Tilting modules for classical Lie superalgebras. J. Lond. Math. Soc. (2) 103, 870–900 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Chen, C.-W., Coulembier, K., Mazorchuk, V.: Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras. Math. Z. 297, 255–281 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Chen, C.-W.: Whittaker modules for classical Lie superalgebras. Commun. Math. Phys. 388, 351–383 (2021)

    MathSciNet  MATH  ADS  Google Scholar 

  32. Chen, C.-W.: Annihilator ideals and blocks of Whittaker modules over quasireductive Lie superalgebras. Preprint arXiv:2108.07532

  33. Cheng, S.-J., Lam, N., Wang, W.: Super duality and irreducible characters of ortho-symplectic Lie superalgebras. Invent. Math. 183, 189–224 (2011)

    MathSciNet  MATH  ADS  Google Scholar 

  34. Cheng, S.-J., Lam, N., Wang, W.: Brundan–Kazhdan–Lusztig conjecture for general linear Lie superalgebras. Duke Math. J. 110, 617–695 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Chen, C.-W., Mazorchuk, V.: Simple supermodules over Lie superalgebras. Trans. Am. Math. Soc. 374, 899–921 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Coulembier, K., Mazorchuk, V.: Extension fullness of the categories of Gelfand–Zeitlin and Whittaker modules. SIGMA Symmetry Integrability Geom. Methods Appl. 11, Paper No. 016 (2015)

  37. Coulembier, K., Mazorchuk, V.: Primitive ideals, twisting functors and star actions for classical Lie superalgebras. J. Reine Ang. Math. 718, 207–253 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Cheng, S.-J., Mazorchuk, V., Wang, W.: Equivalence of blocks for the general linear Lie superalgebra. Lett. Math. Phys. 103, 1313–1327 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  39. Coulembier, K.: The primitive spectrum of a basic classical Lie superalgebra. Commun. Math. Phys. 348(2), 579–602 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  40. Coulembier, K.: Gorenstein homological algebra for rings and Lie superalgebras. Preprint arXiv:1707.05040

  41. Coulembier, K., Penkov, I.: On an infinite limit of BGG categories \({\cal{O} }\). Mosc. Math. J. 19(4), 655–693 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Cline, E., Parshall, B., Scott, L.: Stratifying endomorphism algebras. Mem. Am. Math. Soc. 124(591) (1996)

  43. Cheng, S.-J., Wang, W.: Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics, vol. 144. American Mathematical Society, Providence (2012)

    Google Scholar 

  44. Cheng, S.-J., Wang, W.: Brundan–Kazhdan–Lusztig and super duality conjectures. Publ. Res. Inst. Math. Sci. 44, 1219–1272 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Deodhar, V.V.: On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan–Lusztig polynomials. J. Algebra 111, 483–506 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Deodhar, V.V.: Duality in parabolic set up for questions in Kazhdan–Lusztig theory. J. Algebra 142, 201–209 (1991)

    MathSciNet  MATH  Google Scholar 

  47. Dlab, V.: Properly stratified algebras. C. R. Acad. Sci. Paris Sér. I Math. 331(3), 191–196 (2000)

    MathSciNet  MATH  ADS  Google Scholar 

  48. Frenkel, I., Khovanov, M., Kirillov, A., Jr.: Kazhdan–Lusztig polynomials and canonical basis. Transform. Groups 3(4), 321–336 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Futorny, V., König, S., Mazorchuk, V.: \({\cal{S} }\)-subcategories in \({\cal{O} }\). Manuscr. Math. 102(4), 487–503 (2000)

    MATH  Google Scholar 

  50. Frisk, A., Mazorchuk, V.: Properly stratified algebras and tilting. Proc. Lond. Math. Soc. 92, 29–61 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. Fr. 90, 323–448 (1962)

    MATH  Google Scholar 

  52. Gorelik, M.: On the ghost centre of Lie superalgebra. Ann. Inst. Fourier (Grenoble) 50(6), 1745–1764 (2000)

    MathSciNet  MATH  Google Scholar 

  53. Gorelik, M.: Strongly typical representations of the basic classical Lie superalgebras. J. Am. Math. Soc. 15(1), 167–184 (2002)

    MathSciNet  MATH  Google Scholar 

  54. Geigle, W., Lenzing, H.: Perpendicular categories with applications to representations and sheaves. J. Algebra 144, 273–343 (1991)

    MathSciNet  MATH  Google Scholar 

  55. Humphreys, J.: Representations of Semisimple Lie Algebras in the BGG Category \({\cal{O} }\). Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence (2008)

    Google Scholar 

  56. Jimbo, M.: A \(q\)-analogue of \(U(\mathfrak{gl} (N+1))\), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    MathSciNet  MATH  ADS  Google Scholar 

  57. Kac, V.: Lie superalgebras. Adv. Math. 16, 8–96 (1977)

    MATH  Google Scholar 

  58. Kac, V.: Representations of classical Lie superalgebras. In: Differential Geometrical Methods in Mathematical Physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Mathematics, vol. 676. Springer, pp. 597–626 (1978)

  59. Kashiwara, M.: On crystal bases. Proc. Can. Math. Soc. 16, 155–196 (1995)

    MathSciNet  MATH  Google Scholar 

  60. Khomenko, O.: Categories with projective functors. Proc. Lond. Math. Soc. (3) 90, 711–737 (2005)

    MathSciNet  MATH  Google Scholar 

  61. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    MathSciNet  MATH  ADS  Google Scholar 

  62. Khomenko, O., Mazorchuk, V.: On Arkhipov’s and Enright’s functors. Math. Z. 249(2), 357–386 (2005)

    MathSciNet  MATH  Google Scholar 

  63. Kostant, B.: On Whittaker vectors and representation theory. Inverse Math. 48(2), 101–184 (1978)

    MathSciNet  MATH  ADS  Google Scholar 

  64. Ko, H., Mazorchuk, V.: On first extensions in \({\cal{S}}\)-subcategories of \({\cal{O}}\). Preprint arXiv:2111.11727

  65. Krause, H.: Krull–Schmidt categories and projective covers. Expo. Math. 33(4), 535–549 (2015)

    MathSciNet  MATH  Google Scholar 

  66. König, S., Slungard, I.H., Xi, C.: Double centralizer properties, dominant dimension, and tilting modules. J. Algebra 240, 393–412 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Losev, I.: Quantized symplectic actions and W-algebras. J. Am. Math. Soc. 23(1), 35–59 (2010)

    MathSciNet  MATH  Google Scholar 

  68. Losev, I.: Finite W-algebras. In: Proceedings of the International Congress of Mathematicians Hyderabad, India, pp. 1281–1307 (2010)

  69. Losev, I.: On the structure of the category \({\cal{O} }\) for W-algebras. Semin. Congr. 24, 351–368 (2012)

    MathSciNet  Google Scholar 

  70. Lusztig, G.: Introduction to Quantum Groups. Modern Birkhäuser Classics. Reprint of the: Edition, p. 2010. Birkhäuser, Boston (1994)

  71. Mazorchuk, V.: Parabolic Category \({\cal{O} }\) for Classical Lie Superalgebras. Advances in Lie Superalgebras, pp. 149–166. Springer, New York (2014)

    MATH  Google Scholar 

  72. McDowell, E.: On modules induced from Whittaker modules. J. Algebra 96, 161–177 (1985)

    MathSciNet  MATH  Google Scholar 

  73. McDowell, E.: A module induced from a Whittaker module. Proc. Am. Math. Soc. 118(2), 349–354 (1993)

    MathSciNet  MATH  Google Scholar 

  74. Mazorchuk, V., Miemietz, V.: Serre functors for Lie algebras and superalgebras. Annales de linstitut Fourier 62(1), 47–75 (2012)

    MathSciNet  MATH  Google Scholar 

  75. Mazorchuk, V., Persson Westin, E.: Essential orders on stratified algebras with duality and \({\cal{S}}\)-subcategories in \({\cal{O}}\). Preprint arXiv:2011.11492, J. Pure Appl. Algebra (to appear)

  76. Miličić, D., Soergel, W.: The composition series of modules induced from Whittaker modules. Comment. Math. Helv. 72(4), 503–520 (1997)

    MathSciNet  MATH  Google Scholar 

  77. Mazorchuk, V., Stroppel, C.: Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module. Trans. Am. Math. Soc. 357(7), 2939–2973 (2004)

    MathSciNet  MATH  Google Scholar 

  78. Mazorchuk, V., Stroppel, C.: On functors associated to a simple root. J. Algebra 314(1), 97–128 (2007)

    MathSciNet  MATH  Google Scholar 

  79. Mazorchuk, V., Stroppel, C.: Categorification of (induced) cell modules and the rough structure of generalised Verma modules. Adv. Math. 219(4), 1363–1426 (2008)

    MathSciNet  MATH  Google Scholar 

  80. Premet, A.: Enveloping algebras of Slodowy slices and the Joseph ideal. J. Eur. Math. Soc. 9(3), 487–543 (2007)

    MathSciNet  MATH  Google Scholar 

  81. Romanov, A.: A Kazhdan–Lusztig algorithm for Whittaker modules. Algebras Represent. Theory 24, 81–133 (2021)

    MathSciNet  MATH  Google Scholar 

  82. Rocha-Caridi, A.: Splitting criteria for \({\mathfrak{g} }\)-modules induced from a parabolic and the Bernstein–Gelfand–Gelfand resolution of a finite-dimensional, irreducible \({\mathfrak{g} }\)-module. Trans. Am. Math. Soc. 262(2), 335–366 (1980)

    MathSciNet  MATH  Google Scholar 

  83. Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–223 (1991)

    MathSciNet  MATH  Google Scholar 

  84. Serganova, V.: Kazhdan–Lusztig polynomials and character formula for the Lie superalgebra \({\mathfrak{gl} }(m|n)\). Sel. Math. (N.S.) 2, 607–651 (1996)

    MATH  Google Scholar 

  85. Soergel, W.: Équivalences de certaines catégories de g-modules. C. R. Acad. Sci. Paris Sér. I Math. 303(15), 725–728 (1986)

    MathSciNet  MATH  Google Scholar 

  86. Soergel, W.: Kategorie \({\cal{O} }\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3(2), 421–445 (1990)

    MATH  Google Scholar 

  87. Soergel, W.: Kazhda–Lusztig polynomnials and a combinatoric for tilting modules. Represent. Theory (Electron.) 1, 88–114 (1997)

    MathSciNet  Google Scholar 

  88. Soergel, W.: Character formulas for tilting modules over Kac–Moody algebras. Represent. Theory 2, 432–448 (1998)

    MathSciNet  MATH  Google Scholar 

  89. Webster, B.: Singular blocks of parabolic category \({\cal{O} }\) and finite W-algebras. J. Pure Appl. Algebra 215(12), 2797–2804 (2011)

    MathSciNet  MATH  Google Scholar 

  90. Xiao, H.: On finite dimensional representations of finite W-superalgebras. Preprint arXiv:2101.07345

  91. Zhao, L.: Finite \(W\)-superalgebras for queer Lie superalgebras. J. Pure Appl. Algebra 218(7), 1184–1194 (2014)

    MathSciNet  MATH  Google Scholar 

  92. Zeng, Y., Shu, B.: Finite W-superalgebras for basic Lie superalgebras. J. Algebra 438, 188–234 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first two authors are partially supported by MOST grants of the R.O.C. They also acknowledge support from the National Center for Theoretical Sciences of the R.O.C. The third author is supported by the Swedish Research Council. We thank A. Brown and A. Romanov for pointing out an inaccuracy in the first version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Whi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Structural Modules in \(\mathcal O^{\nu \text {-pres}}\)

The goal of this section is to describe the simple, standard and proper standard objects in \(\mathcal O^{\nu \text {-pres}}.\)

For a given module \(M\in \mathcal O\), let \(\text {Tr}_{\nu }(M)\) denote the sum of the images of all homomorphisms from the \(\nu \)-admissible projective modules to M. For a fixed \(\lambda \in {\Lambda (\nu )}\), denote by \(A(\lambda )\) the kernel of the canonical epimorphism \(P(\lambda ) \twoheadrightarrow M(\lambda )\). Consider the following modules:

$$\begin{aligned}&S(\lambda ):= P(\lambda )/\text {Tr}_{\nu }(\textrm{rad}P(\lambda )), \end{aligned}$$
(8.1)
$$\begin{aligned}&D(\lambda ):= P(\lambda )/\text {Tr}_{\nu }(A(\lambda )), \end{aligned}$$
(8.2)

Define \(Q(\lambda )\) to be the quotient of \(P(\lambda )\) modulo the sum of the images of all homomorphisms \(P(\mu )\rightarrow P(\lambda )\), where \(\mu \in {\Lambda (\nu )}\) and \(\mu >\lambda \). Denote the natural projection by

$$\begin{aligned} \varpi : P(\lambda )\rightarrow Q(\lambda ). \end{aligned}$$
(8.3)

By construction, the modules \(S(\lambda ), D(\lambda )\) and \(Q(\lambda )\) lie in \(\mathcal O^{\nu \text {-pres}}\). We recall that \(\textbf{T}_{w_0^\nu }\) denotes the twisting functor on \(\mathcal O\) associated to \(w^\nu _0\); see Sect. 6.2.1. The following proposition describe these modules as structural objects with respect to the stratified structure on \(\mathcal O^{\nu \text {-pres}}\):

Proposition 49

Suppose that \({\mathfrak {g}}\) is one of the Lie superalgebras from the series in (2.2)–(2.4). For any \(\lambda \in {\Lambda (\nu )}\), we have

$$\begin{aligned}&S(\lambda )\cong \textbf{T}_{w_0^\nu }L(\lambda )\text { and } \pi (S(\lambda ))\cong \pi (L(\lambda )), \end{aligned}$$
(8.4)
$$\begin{aligned}&D(\lambda )\cong \textbf{T}_{w_0^\nu }M(\lambda )\text { and } \pi (D(\lambda ))\cong \overline{\Delta }(\lambda ), \end{aligned}$$
(8.5)
$$\begin{aligned}&\pi (Q(\lambda ))\cong \Delta (\lambda ). \end{aligned}$$
(8.6)

We will prove Proposition 49 using the following lemmas.

Lemma 50

For any weight \(\lambda \in {\mathfrak {h}}^*\), there is a direct summand P of \({\text {Res}}P(\lambda )\) such that \(P\cong P_0(\lambda )\) and \(U({\mathfrak {g}})P =P(\lambda )\).

Proof

We first decompose \({\text {Res}}P(\lambda ) =\bigoplus _{i=1}^{\ell }P_0(\mu _i)\). Consider the canonical quotients

$$\begin{aligned}&p: P(\lambda ) \twoheadrightarrow L(\lambda ), \end{aligned}$$
(8.7)
$$\begin{aligned}&q:K(L_0(\lambda ))\twoheadrightarrow L(\lambda ), \end{aligned}$$
(8.8)

where p factors through q. By (8.8), the \({\mathfrak {g}}_{{\bar{0}}}\)-module \({\text {Res}}L(\lambda )\) has a quotient isomorphic to \(L_0(\lambda )\). Therefore, \({\text {Res}}P(\lambda )\) has \(L_0(\lambda )\) as a quotient as well. This implies that there is \(1\le i\le \ell \) such that \(\mu _i=\lambda \), and, if we let \(P:=P_0(\mu _i)\), then \(P\not \subseteq \ker (p)\). The fact that \(U({\mathfrak {g}})P =P(\lambda )\) then follows by combining the uniqueness of the maximal submodule of \(P(\lambda )\) with \(p(P)\ne 0\). \(\square \)

For any \(\lambda \in {\Lambda (\nu )}\), define

$$\begin{aligned} {\Lambda (\nu )}_{>\lambda }:=\{\mu \in {\Lambda (\nu )}\text { such that } \mu >\lambda \}. \end{aligned}$$

Lemma 51

For each \(\lambda \in \Lambda (\nu )\), there is a short exact sequence of \({\mathfrak {g}}\)-modules as follows:

$$\begin{aligned}&0\rightarrow X \rightarrow {\text {Ind}}P_0(\lambda ) \rightarrow K(P_0(\lambda )) \rightarrow 0, \end{aligned}$$

Here \(X = U({\mathfrak {g}}_{-1})\cdot ({\mathfrak {g}}_1U({\mathfrak {g}}_1))\otimes P_0(\lambda )\subset {\text {Ind}}P_0(\lambda )\) has a Kac flag, subquotients of which are isomorphic to direct sums of the modules of the form \(K(P_0(\gamma ))\), where \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}\).

Furthermore, X is an epimorphic image of a direct sum of modules of the form \(P(\gamma )\), where \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}.\)

Proof

For any \(k>1\), we may observe that

$$\begin{aligned}&\,{\text {Hom}}_{{\mathfrak {g}}_0}(\Lambda ^k \mathfrak g_1\otimes P_0(\lambda ), L_0(\gamma )) = [ \Lambda ^k \mathfrak g_1^*\otimes L_0(\gamma ): L_0(\lambda )], \end{aligned}$$

which implies that \(\Lambda ^k({\mathfrak {g}}_1)\otimes P_0(\lambda )\) decomposes into a direct sum of modules \(P_0(\gamma )\), with \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}\). In particular, the \({\mathfrak {g}}_{\ge 0}\)-module \({\text {Ind}}_{{\mathfrak {g}}_0}^{{\mathfrak {g}}_{\ge 0}}P_0(\lambda )\) has a filtration, subquotients of which are direct sums of \(P_0(\gamma )\) such that \({\mathfrak {g}}_1P_0(\gamma )=0\) and \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}\cup \{\lambda \}\). It follows that the module

$$\begin{aligned}&{\text {Ind}}P_0(\lambda ) \cong {\text {Ind}}_{{\mathfrak {g}}_{\ge 0}}^{\mathfrak {g}}{\text {Ind}}_{{\mathfrak {g}}_0}^{{\mathfrak {g}}_{\ge 0}} P_0(\lambda ), \end{aligned}$$

admits a Kac flag, subquotients of which are of the form \(K(P_0(\gamma ))\), where we have \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}\cup \{\lambda \}\). By [CCM, Theorem 51], each \(K(P_0(\gamma ))\) has simple top, which is, automatically, isomorphic to \(L(\gamma )\). Consequently, \(K(P_0(\gamma ))\) is a quotient of \(P(\gamma )\). This completes the proof. \(\square \)

Proof of Proposition 49

The isomorphisms in (8.4), (8.5) are proved in [Chi1, Theorem 12]. It remains to prove the isomorphism in (8.6). To see this, we first recall the definitions of the Kac functor \(K(-)\) and the module \(\Delta _0(\lambda )\) from Sects. 5 and 5.1. We shall show that \(K(\Delta _0'(\lambda ))\cong Q(\lambda )\).

Let \(Q_0(\lambda )\) denote the quotient of \(P_0(\lambda )\) by the sum of the traces of all \(P_0(\mu )\), where \(\mu \in {{\Lambda (\nu )}_{>\lambda }}\), in \(P_0(\lambda )\).

Let P be the \({\mathfrak {g}}_0\)-submodule of \({\text {Res}}P(\lambda )\) described in Lemma 50. Recalling the map \(\varpi \) from (8.3), we see that \(\varpi (P)\ne 0\). In particular, the \({\mathfrak {g}}_0\)-submodule \(\varpi (P)\) is a quotient of \(P\cong P_0(\lambda )\). We are going to show that there is an \({\mathfrak {g}}_{{\bar{0}}}\)-epimorphism

$$\begin{aligned}&Q_0(\lambda ) \twoheadrightarrow \varpi (P), \end{aligned}$$
(8.9)

equivalently, we shall show that \([\varpi (P):L_0(\gamma )]=0\), for any \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}\).

We first claim that \({\mathfrak {g}}_1 \varpi (P)=0,\) namely, that \({\mathfrak {g}}_1 P\in \ker (\varpi )\). To see this, we consider the epimorphism \({\text {Ind}}(P) \twoheadrightarrow U({\mathfrak {g}})P\) sending \(x\otimes v\) to xv, for any \(x\in U({\mathfrak {g}})\) and \(v\in P\). By Lemma 51, the \({\mathfrak {g}}\)-module \(U({\mathfrak {g}}_{-1}){\mathfrak {g}}_1U({\mathfrak {g}}_1)P\) is an epimorphic image of a direct sum of \(P(\gamma )\)’s, where \(\gamma \in {{\Lambda (\nu )}_{>\lambda }}\). Consequently, we have \({\mathfrak {g}}_1P\subseteq \ker (\varpi )\), as desired.

Next, we suppose that \([\varpi (P):L_0(\gamma )]>0\), for some weight \(\gamma \). Then there is a \({\mathfrak {g}}_0\)-submodule Y of \(\varpi (P)\) having a quotient \(L_0(\gamma )\). Consider

$$\begin{aligned}&\,{\text {Hom}}_{\mathfrak {g}}(K(Y), Q(\lambda )) =\,{\text {Hom}}_{{\mathfrak {g}}_0}(Y, Q(\lambda )^{{\mathfrak {g}}_1}) \supseteq \,{\text {Hom}}_{{\mathfrak {g}}_0}(Y, \varpi (P)) \ne 0, \end{aligned}$$

where \(Q(\lambda )^{{\mathfrak {g}}_1}\) denotes the \({\mathfrak {g}}_1\)-invariants of \(Q(\lambda )\). This leads to a non-zero homomorphism from \(P(\gamma )\) to \(Q(\lambda )\). Consequently, \(\gamma \) cannot be a weight in \({{\Lambda (\nu )}_{>\lambda }}\). This proves (8.9).

Finally, we note that \(U({\mathfrak {g}})\varpi (P)=Q(\lambda )\) by Lemma 50. Then we consider

$$\begin{aligned}&\,{\text {Hom}}_{\mathfrak {g}}(K(\Delta '_0(\lambda )), Q(\lambda )) =\,{\text {Hom}}_{{\mathfrak {g}}_0}(\Delta '_0(\lambda ), Q(\lambda )^{{\mathfrak {g}}_1}). \end{aligned}$$

Since \(Q_0(\lambda )\) is isomorphic to the parabolically induced \({\mathfrak {g}}_{{\bar{0}}}\)-module \(\Delta '_0(\lambda )\) from the projective-injective \(\mathfrak l_\nu \)-module \(P(\mathfrak l_\nu , \lambda )\), we obtain an epimorphism from \(K(\Delta '_0(\lambda ))\) to \(Q(\lambda )\).

Finally, it remains to show that \(K(\Delta _0'(\lambda ))\) is an epimorphic image of \(Q(\lambda )\). By [CCM, Theorem 51], the top of \(K(\Delta _0'(\lambda ))\) is simple, and so it is isomorphic to \(L(\lambda )\). Then we get an epimorphism \(f: P(\lambda )\twoheadrightarrow K(\Delta _0'(\lambda ))\). It remains to show that, if \(\eta \in {\Lambda (\nu )}\) is such that \([K(\Delta _0'(\lambda )): L(\eta )]\ne 0\), then \(\eta \not > \lambda \). We will show the stronger statement that \(\eta \le \lambda \). To see this, we observe that

$$\begin{aligned}&\textrm{ch}K(\Delta _0'(\lambda )) = \sum _{\mu \in W_\nu \cdot \lambda } \textrm{ch}M(\mu ), \end{aligned}$$

which implies that there is \(\mu \in W_\nu \cdot \lambda \) such that \([M(\mu ):L(\eta )]\ne 0\). Since \(\mu \in W_\nu \cdot \lambda \) and \(\lambda , \eta \in {\Lambda (\nu )}\), we have \([M(\mu )/M(\lambda ):L(\eta )]=0\) and thus \([M(\mu ):L(\eta )] = [M(\lambda ):L(\eta )]\). The conclusion follows. \(\square \)

Example 52

Consider \({\mathfrak {g}}=\mathfrak {sl}(2)\) with \(W_\nu =W\). Let \(\lambda \in {\Lambda (\nu )}\). If \(\lambda \) is regular, then \(S(\lambda )=D(\lambda )\) is isomorphic to the the dual Verma module of highest weight \(w_0^\nu \cdot \lambda \) and \(Q(\lambda )= P(\lambda )\). If \(\lambda \) is singular, then \(S(\lambda ) =D(\lambda ) =Q(\lambda )\).

Appendix B: A Realization of \({\overline{\mathcal O}}\) and Its Graded Version

In this appendix, we realize \({\overline{\mathcal O}}\) as the category of finite-dimensional (locally unital) modules over a locally unital algebra. In the case \({\mathfrak {g}}=\mathfrak {gl}(m|n)\), we study the graded version of \({\overline{\mathcal O}}\) and show that all structural modules in \({\overline{\mathcal O}}\) have graded lifts.

1.1 Morita equivalence for \(\mathcal O\)

We define A to be the locally unital algebra of \(\mathcal O\), that is

$$\begin{aligned}&A:=\bigoplus _{\lambda , \mu \in \Lambda } \,{\text {Hom}}_{\mathfrak g}(P(\lambda ), P(\mu )). \end{aligned}$$

For \(\lambda \in {\Lambda (\nu )}\), denote by \(1_\lambda \) the identity endomorphism on \(P(\lambda )\). Then \(\{1_\lambda |~\lambda \in \Lambda \}\) forms a complete set of mutually orthogonal idempotents and \(A = \bigoplus _{\lambda ,\mu \in \Lambda }1_\mu A 1_\lambda \). Define \(\text {mof}\)-A to be the category of finite-dimensional locally unital right A-modules. This means that the objects of \(\text {mof}\)-A are finite dimensional right A-modules M such that \(M= \bigoplus _{\lambda \in \Lambda } M1_\lambda \) and morphisms in \(\text {mof}\)-A are homomorphism of A-modules. Then we have a Morita type equivalence (c.f. [BLW, Section 2.1])

$$\begin{aligned}&T(-):\mathcal O\xrightarrow {\cong }\text {mof-}A, \end{aligned}$$

via the functor \(T(M):=\bigoplus _{\lambda \in \Lambda } \,{\text {Hom}}_{\mathfrak {g}}(P(\lambda ), M)\), where \(M\in \mathcal O\). We may note that \(T(P(\lambda )) = 1_\lambda A\) and \(\dim 1_\lambda A, \dim A1_\lambda <\infty \).

In particular, for a given \(\lambda \in \Lambda \) (respectively \(\mu \in \Lambda \)), there are only finitely many \(\mu \in \Lambda \) (respectively \(\lambda \in \Lambda \)) such that \(\,{\text {Hom}}_{\mathfrak {g}}(P(\lambda ), P(\mu ))\ne 0\). Hence \(A= \bigoplus _{\lambda ,\mu \in \Lambda }\,{\text {Hom}}_A(1_\lambda A,1_\mu A)\).

1.2 Morita equivalence for \({\overline{\mathcal O}}\)

We define a subalgebra B of A as follows

$$\begin{aligned}&B:=\bigoplus _{\lambda , \mu \in {\Lambda (\nu )}} \,{\text {Hom}}_{\mathfrak g}(P(\mu ), P(\lambda ))=\bigoplus _{\lambda ,\mu \in {\Lambda (\nu )}} 1_\lambda A 1_\mu . \end{aligned}$$
(9.1)

Similarly, we define \({\text {mof-}B}\) to be the category of all finite dimensional locally unital right B-modules.

Lemma 53

There is an equivalence \(\overline{\mathcal O}\cong {\text {mof-}B} \).

Proof

Let \(\overline{{\text {mof-}A}}\) denote the Serre quotient of \({\text {mof-}A}\) by the Serre subcategory \(I_\nu \) of all modules \(M\in {\text {mof-}A}\) which satisfy \(M1_\lambda =0\), for all \(\lambda \in {\Lambda (\nu )}\). We observe that \(I_\nu =T(\mathcal I^\nu )\). Therefore, \(\overline{{\text {mof-}A}}\) is equivalent to \(\overline{\mathcal O}\) through the Morita equivalence functor T. Therefore we have a commutative diagram

where \(\pi ^A\) denotes the quotient functor from \({\text {mof-}A}\) to \(\overline{{\text {mof-}A}}\).

In order to complete the proof we define a functor \(\pi ': {\text {mof-}A}\rightarrow {\text {mof-}B}\) by letting

$$\begin{aligned}&\pi ': M\mapsto \bigoplus _{\lambda \in {\Lambda (\nu )}} M1_\lambda . \end{aligned}$$

We are now in the position to invoke [CP, Lemma A.2.1] which says that \(\pi '\) induces an equivalence \(\widetilde{\pi '}: \overline{{\text {mof-}A}}\rightarrow {\text {mof-}B}\) such that \(\pi '= \widetilde{\pi '} \circ \pi ^A\). \(\square \)

By the proof of Lemma 53, there are functors \(T^B: \overline{\mathcal O} \xrightarrow {\cong } {\text {mof-}B}\) and \(\pi ': {\text {mof-}A}\rightarrow {\text {mof-}B}\) that make the following diagram commutative:

Corollary 54

The exact functor

$$\begin{aligned}&\pi '\circ T: \mathcal O\rightarrow {\text {mof-}B}, ~M\mapsto \bigoplus _{\lambda \in {\Lambda (\nu )}}\,{\text {Hom}}_{\mathfrak {g}}(P(\lambda ),M) \end{aligned}$$
(9.2)

satisfies the universal property for the Serre quotient \({\overline{\mathcal O}}\).

1.3 Graded category \(\mathcal O\) for \(\mathfrak {gl}(m|n)\)

We now consider the case that \({\mathfrak {g}}=\mathfrak {gl}(m|n)\). Recall the simple-preserving contragredient duality \((-)^\vee :\mathcal O\rightarrow \mathcal O\) from Sect. 2.5. In this case, the algebra A admits a positive grading such that A is a standard Koszul algebra. We refer to [Bru4, Sections 3,4] and [BLW] for the details. With respect to this grading, the idempotents \(1_\lambda \), for \(\lambda \in \Lambda \), have degree zero.

Example 55

For \({\mathfrak {g}}=\mathfrak {gl}(1|1)\), the corresponding category \(\mathcal O\) is equivalent to the category of finite-dimensional locally unital right modules over the path algebra of the following infinite quiver

figure b

modulo the relations \(x_iy_i=y_{i+1}x_{i+1},~x_{i+1}x_{i} =y_{i}y_{i+1}=0,\) for all \(i\in {\mathbb Z}\). The grading is given by \(\deg (x_i)=\deg (y_i)=1.\)

We denote by \({\text {gmof-}A}\) the category of graded finite-dimensional unital right A-modules with homogenous homomorphisms of degree zero. Also, we denote by \(\mathbb F^A\) the functor from \({\text {gmof-}A}\) to \({\text {mof-}A}\) forgetting the grading. A object \(\dot{X}\in {\text {gmof-}A}\) is called a graded lift of \(X\in {\text {mof-}A}\) (respectively \(X\in \mathcal O\)) provided that \(\mathbb F^A(\dot{X})\cong X\) (respectively \(\mathbb F^A(\dot{X})\cong T(X)\)). Let \(\langle 1 \rangle \) denote the degree shift functor defined on graded modules, namely, for a given graded module M, \(M\langle 1 \rangle \) has the same module structure but \((M\langle 1 \rangle )_{n}:=M_{n-1}\), for any homogenous subspace \(M_n\). For \(m\in {\mathbb Z}\), we set \(\langle m \rangle := \langle 1\rangle ^m.\)

Due to positivity of the grading, for \(\lambda \in \Lambda \), we can choose a graded lift \(\dot{L}(\lambda )\) of \(L(\lambda )\), a graded lift \(\dot{M}(\lambda )\) of \(M(\lambda )\), a graded lift \(\dot{M}(\lambda )^\vee \) of \(M(\lambda )^\vee \), a graded lift \(\dot{P}(\lambda )\) of \(P(\lambda )\) and a graded lift \(\dot{I}(\lambda )\) of \(I(\lambda )\), such that the canonical maps

$$\begin{aligned}&\dot{P}(\lambda ) \twoheadrightarrow \dot{M}(\lambda ) \twoheadrightarrow \dot{L}(\lambda ),\\&\dot{L}(\lambda ) \hookrightarrow \dot{M}(\lambda )^\vee \twoheadrightarrow \dot{I}(\lambda ) \end{aligned}$$

are homogenous of degree zero.

1.4 Graded category \({\overline{\mathcal O}}\) for \(\mathfrak {gl}(m|n)\)

Since B is a positively graded algebra, we can denote by

$$\begin{aligned} {\dot{\overline{\mathcal O}}}:= {\text {gmof-}B}\end{aligned}$$

the category of graded finite-dimensional unital right B-modules whose morphisms are all homogenous homomorphisms of degree zero. We consider \(\dot{\overline{\mathcal O}}\) as a graded version of \(\overline{\mathcal O}\).

Let \(\mathbb F^B: {\text {gmof-}B}\rightarrow {\text {mof-}B}\) be the functor which forgets the grading. A module X in \({\text {mof-}B}\) (respectively \(X \in \overline{\mathcal O}\)) is said to have a graded lift \(\dot{X}\in {\dot{\overline{\mathcal O}}}\) if \(\mathbb F^B(\dot{X})\cong X\) (respectively \(T^B(X)\cong \mathbb F^B(\dot{X})\)).

Lemma 56

Let \(\dot{I_\nu }\) be the Serre subcategory of \({\text {gmof-}A}\) generated by \(\{T(L(\lambda ))\langle i\rangle |~\lambda \in {\Lambda (\nu )},~i\in {\mathbb Z}\}\). Then, the functor

$$\begin{aligned} {\dot{\pi }}: {\text {gmof-}A}\rightarrow {\dot{\overline{\mathcal O}}},~ M\mapsto \bigoplus _{\lambda \in {\Lambda (\nu )}} M1_\lambda , \end{aligned}$$

gives rise to an equivalence \({\text {gmof-}A}/I_\nu \cong {\dot{\overline{\mathcal O}}}.\)

Proof

The proof is similar to the proof of Lemma 53. \(\square \)

Let \(\lambda \in {\Lambda (\nu )}\). We recall modules \(S(\lambda ), D(\lambda )\) and \(Q(\lambda )\) from Sect. 8; see also Proposition 49. We note that \(\pi (M(\lambda )^\vee )\cong \overline{{\nabla }}(\lambda )\).

Lemma 57

Let \(\lambda \in {\Lambda (\nu )}\). Then the modules \(S(\lambda )\), \(D(\lambda )\) and \(Q(\lambda )\) from Proposition 49, and \(M(\lambda )^\vee \) have graded lifts in \({\text {gmof-}A}\).

Proof

The proof is similar to the proof of [BLW, Lemma 5.5]. \(\square \)

For a given \(\lambda \in {\Lambda (\nu )},\) we let \(\dot{Q}(\lambda )\) be the quotient of \(\dot{P}(\lambda )\) by the submodule generated by the image of all homomorphisms \(\dot{P}(\mu )\langle m \rangle \rightarrow \dot{P}(\lambda )\), for \(m\in {\mathbb Z}\) and \(\mu \in {\Lambda (\nu )}\). From Lemma 57, it is easy to see that \(\dot{Q}(\lambda )\) is a graded lift of \(Q(\lambda )\).

Let \({\dot{X}} \in {\text {gmof-}A}\) be a graded lift of \(X\in {\text {mof-}A}\). We may observe that \(\dot{\pi }({\dot{X}})\) is a graded lift of \(\pi '(X)\in {\text {mof-}B}\) since

$$\begin{aligned} \mathbb F^B({\dot{\pi }} (\dot{X})) \cong \mathbb F^B(\bigoplus _{\lambda \in {\Lambda (\nu )}} \dot{X}1_\lambda ) \cong \bigoplus _{\lambda \in {\Lambda (\nu )}} X1_\lambda \cong \pi '(X). \end{aligned}$$

Therefore, for any \(\lambda \in {\Lambda (\nu )}\),

$$\begin{aligned}&\dot{P}^B(\lambda ):={\dot{\pi }}({\dot{P}}(\lambda )),~{\dot{\Delta }}^B(\lambda ):={\dot{\pi }}({\dot{Q}}(\lambda )), \\&\dot{\overline{{\nabla }}}^B(\lambda ):=\dot{\pi }({\dot{M}}(\lambda )^\vee ),~{\dot{L}}^B(\lambda ):=\dot{\pi }({\dot{L}}(\lambda )), \end{aligned}$$

are the graded lifts of \(\pi (P(\lambda )), \Delta (\lambda ), \overline{{\nabla }}(\lambda )\text { and }\pi (L(\lambda ))\), respectively. In particular, we have the following graded BGG reciprocity.

Lemma 58

(Graded BGG reciprocity). Let \(\lambda ,\mu \in {\Lambda (\nu )}\). Then \({\dot{\pi }}({\dot{P}}(\lambda ))\) has a \({\dot{\Delta }}\)-flag. Furthermore, for any \(m\in {\mathbb Z}\), we have

$$\begin{aligned}&(\dot{P}^B(\lambda ): \dot{\Delta }^B(\mu )\langle m \rangle ) = [ \dot{\overline{{\nabla }}}^B(\mu )\langle m \rangle : {\dot{L}}^B(\lambda )]. \end{aligned}$$

Proof

The first assertion is proved using Lemma 21 and an argument similar to the proof of [MSt1, Lemma 8.6]. For the proof of the graded BGG reciprocity, we note the following:

$$\begin{aligned}&\bigoplus _{i\in {\mathbb Z}}{\text {Ext}}^1_{{\dot{\overline{\mathcal O}}}}(\dot{\Delta }^B(\lambda )\langle i\rangle , \dot{\overline{{\nabla }}}^B(\mu )) \cong {\text {Ext}}^1_{{\text {mof-}B}}(T^B{\Delta }(\lambda ), T^B{\overline{{\nabla }}}(\mu ))\cong {\text {Ext}}^1_{\overline{\mathcal O}}({\Delta }(\lambda ), {\overline{{\nabla }}}(\mu )), \end{aligned}$$

which is zero by Theorem 24. Similarly, we calculate

$$\begin{aligned} \bigoplus _{i\in {\mathbb Z}}\,{\text {Hom}}_{{\dot{\overline{\mathcal O}}}}(\dot{\Delta }^B(\lambda )\langle i\rangle , \dot{\overline{{\nabla }}}^B(\mu ))&\cong \,{\text {Hom}}_{{\text {mof-}B}}(T^B{\Delta }(\lambda ), T^B{\overline{{\nabla }}}(\mu )) \\ {}&\cong \,{\text {Hom}}_{\overline{\mathcal O}}({\Delta }(\lambda ), {\overline{{\nabla }}}(\mu )), \end{aligned}$$

which is zero, for \(\lambda \ne \mu \), and is isomorphic to \(\mathbb {C}\), for \(\lambda =\mu \), by Lemma 21. Since \({\dot{\Delta }}^B(\lambda )\) has a quotient isomorphic to \(\dot{L}^B(\lambda )\), it follows that

$$\begin{aligned} \,{\text {Hom}}_{{\dot{\overline{\mathcal O}}}}(\dot{\Delta }^B(\lambda ), \dot{\overline{{\nabla }}}^B(\lambda )\cong \mathbb {C}. \end{aligned}$$

The claim of the lemma follows now by a standard argument; see, e.g., [Hu, Section 3.11].

\(\square \)

For \(\lambda ,\mu \in {\Lambda (\nu )}\), we define

$$\begin{aligned} {[}\dot{\overline{{\nabla }}}^B(\lambda ): \dot{L}^B(\mu )]_q:= \sum _{m\ge 0} [\dot{\overline{{\nabla }}}^B(\lambda ): \dot{L}^B(\mu )\langle m \rangle ] q^m. \end{aligned}$$

Similarly, we define \((\dot{P}^B(\lambda ): {\dot{\Delta }}^B(\mu ))_q\). We have the following graded version of Corollary 45.

Proposition 59

For \(\lambda ,\mu \in \Lambda (\nu )\), we have

$$\begin{aligned}&(\dot{P}^B(\mu ): {\dot{\Delta }}^B(\lambda ))_q=[\dot{\overline{{\nabla }}}^B(\lambda ):\dot{L}^B(\mu )]_q =\texttt {t}_{-f_\lambda \cdot w_0^\nu ,-f_\mu \cdot w_0^\nu }(q). \end{aligned}$$

Proof

We calculate

$$\begin{aligned}&\sum _{m\ge 0}[\dot{\overline{{\nabla }}}^B(\lambda )\langle m\rangle : \dot{L}^B(\mu )]q^m \\&\quad =\sum _{m\ge 0}[{\dot{\pi }}({\dot{M}}(\lambda )^\vee ): {\dot{\pi }}( \dot{L}(\mu )\langle -m\rangle )]q^m\\&\quad =\sum _{m\ge 0}[\dot{M}(\lambda )^\vee : \dot{L}(\mu )\langle -m\rangle ]q^m \\&\quad =\sum _{m\ge 0}[\dot{M}(\lambda ): \dot{L}(\mu )\langle m\rangle ]q^m, \end{aligned}$$

which is equal to the matrix coefficient of the matrix inverse to \(\left( \ell _{f_{\mu },f_\lambda }(q^{-1})\right) \) by [BLW, Section 5.9]; see also [Bru4, Theorem 3.6]. Now, by [Bru2, Corollary 2.24] this inverse matrix is precisely \(\left( t_{-f_{\lambda },-f_{\mu }}(q)\right) \). By Proposition 9, the polynomial \(t_{-f_{\lambda },-f_{\mu }}(q)\) is equal to \(\texttt {t}_{-f_\lambda \cdot w_0^\nu ,-f_\mu \cdot w_0^\nu }(q)\), which proves the claim. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CW., Cheng, SJ. & Mazorchuk, V. Whittaker Categories, Properly Stratified Categories and Fock Space Categorification for Lie Superalgebras. Commun. Math. Phys. 401, 717–768 (2023). https://doi.org/10.1007/s00220-023-04652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04652-6

Navigation