Skip to main content
Log in

Categorification of Skew-symmetrizable Cluster Algebras

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We propose a new framework for categorifying skew-symmetrizable cluster algebras. Starting from an exact stably 2-Calabi–Yau category \({\mathcal{C}}\) endowed with the action of a finite group Γ, we construct a Γ-equivariant mutation on the set of maximal rigid Γ-invariant objects of \({\mathcal{C}}\). Using an appropriate cluster character, we can then link these date to an explicit skew-symmetrizable cluster algebra. As an application we prove the linear independence of the cluster monomials in this setting. Finally, we illustrate our construction with examples associated with partial flag varieties and unipotent subgroups of Kac–Moody groups, generalizing to the non simply-laced case several results of Geiß–Leclerc–Schröer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, M., Reiten, I., Smalø, S.O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1995)

  2. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math. 145(4), 1035–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakalov, B., Kirillov, A. Jr.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, vol. 21. American Mathematical Society, Providence RI (2001)

  5. Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bongartz, K.: Algebras and quadratic forms. J. Lond. Math. Soc. (2) 28(3), 461–469 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81(3), 595–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapoton, F., Fomin, S., Zelevinsky, A.: Polytopal realizations of generalized associahedra. Can. Math. Bull. 45(4), 537–566 (2002). Dedicated to Robert V. Moody

    Article  MathSciNet  MATH  Google Scholar 

  9. Caldero, P., Keller, B.: From triangulated categories to cluster algebras. II. Ann. Sci. Éc. Norm. Super. (4) 39(6), 983–1009 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math 172(1), 169–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

  12. Demonet, L.: Algèbres amassées et algèbres préprojectives: le cas non simplement lacé. C. R. Math. Acad. Sci. Paris 346(7–8), 379–384 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Demonet, L.: Catégorification d’algèbres amassées antisymétrisables. PhD thesis, Université de Caen (2008)

  14. Demonet, L.: Skew group algebras of path algebras and preprojective algebras. J. Algebra 323(4), 1052–1059 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehy, R., Keller, B.: On the combinatorics of rigid objects in 2-Calabi–Yau categories. Int.Math. Res. Not. 2008, Art. ID rnn029, 17 pages (2008)

  16. Dupont, G.: An approach to non-simply laced cluster algebras (2009). arXiv:math/0512043, important corrections

  17. Dupont, G.: An approach to non-simply laced cluster algebras. J. Algebra 320(4), 1626–1661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations. I. Mutations. Sel. Math. New Ser. 14(1), 59–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations. II. Applications to cluster algebras. J. Am. Math. Soc. 23(1), 749–790 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Fock, V.V., Goncharov, A.B.: Cluster \(\mathcal X\)-varieties, amalgamation, and Poisson–Lie groups. In: Algebraic Geometry and Number Theory, Progr. Math., vol. 253, pp. 27–68. Birkhäuser Boston, Boston, MA (2006)

  21. Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi–Yau categories. Trans. Am. Math. Soc. 362(2), 859–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002, electronic)

    Google Scholar 

  24. Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. Math. (2) 158(3), 977–1018 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Gabriel, P.: The universal cover of a representation-finite algebra. In: Representations of Algebras (Puebla, 1980). Lecture Notes in Math., vol. 903, pp. 68–105. Springer, Berlin (1981)

  28. Geiß, C., Leclerc, B., Schröer, J.: Cluster algebra structures and semicanoncial bases for unipotent groups (2008). arXiv:math/0703039v3

  29. Geiß, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras. Ann. Sci. Éc. Norm. Super. (4) 38(2), 193–253 (2005)

    MATH  Google Scholar 

  30. Geiß, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras. Invent. Math. 165(3), 589–632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geiß, C., Leclerc, B., Schröer, J.: Verma modules and preprojective algebras. Nagoya Math. J. 182, 241–258 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Geiß, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras. II. A multiplication formula. Compos. Math. 143(5), 1313–1334 (2007)

    MATH  Google Scholar 

  33. Geiß, C., Leclerc, B., Schröer, J.: Partial flag varieties and preprojective algebras. Ann. Inst. Fourier (Grenoble) 58(3), 825–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Geiß, C., Schröer, J.: Extension-orthogonal components of preprojective varieties. Trans. Am. Math. Soc. 357(5), 1953–1962 (2005, electronic)

    Google Scholar 

  35. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and poisson geometry. Mosc. Math. J. 3(3), 899–934, 1199 (2003). Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday

    Google Scholar 

  36. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Weil–Petersson forms. Duke Math. J. 127(2), 291–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62(3), 339–389 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hubery, A.W.: Representations of quivers respecting a quiver automorphism and a theorem of Kac. PhD thesis, University of Leeds (2002)

  39. Hubery, A.W.: Quiver representations respecting a quiver automorphism: a generalisation of a theorem of Kac. J. Lond. Math. Soc. (2) 69(1), 79–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Igusa, K.: Notes on the no loops conjecture. J. Pure Appl. Algebra 69(2), 161–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Iyama, O.: Auslander correspondence. Adv. Math. 210(1), 51–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Iyama, O.: Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. 210(1), 22–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kashiwara, M.: On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer-Verlag, New York (1995)

  45. Keller, B., Reiten, I.: Acyclic Calabi–Yau categories. Compos. Math. 144(5), 1332–1348 (2008). With an appendix by Michel Van den Bergh

    Google Scholar 

  46. Kumar, S.: Kac–Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204. Birkhäuser Boston Inc., Boston, MA (2002)

  47. Lenzing, H.: Nilpotente elemente in Ringen von endlicher globaler dimension. Math. Z. 108, 313–324 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4(2), 365–421 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, vol. 110. Birkhäuser Boston Inc., Boston, MA (1993)

  50. Lusztig, G.: Total positivity and canonical bases. In: Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, pp. 281–295. Cambridge Univ. Press, Cambridge, MA (1997)

  51. Lusztig, G.: Semicanonical bases arising from enveloping algebras. Adv. Math. 151(2), 129–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York (1971)

  53. Marsh, R., Reineke, M., Zelevinsky, A.: Generalized associahedra via quiver representations. Trans. Am. Math. Soc. 355(10), 4171–4186 (2003, electronic)

    Google Scholar 

  54. Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Palu, Y.: Cluster characters for 2-Calabi–Yau triangulated categories. Ann. Inst. Fourier (Grenoble) 58(6), 2221–2248 (2008)

    Google Scholar 

  56. Reiten, I., Riedtmann, C.: Skew group algebras in the representation theory of Artin algebras. J. Algebra 92(1), 224–282 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, D.: Clusters in non-simply-laced finite type via Frobenius morphisms. Algebra Colloq. 16(1), 143–154 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Demonet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demonet, L. Categorification of Skew-symmetrizable Cluster Algebras. Algebr Represent Theor 14, 1087–1162 (2011). https://doi.org/10.1007/s10468-010-9228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-010-9228-4

Keywords

Mathematics Subject Classifications (2010)

Navigation