Skip to main content
Log in

Primitive Ideals and Automorphisms of Quantum Matrices

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let \(\mathbb{K}\) be a field and q be a nonzero element of \(\mathbb{K}\) that is not a root of unity. We give a criterion for 〈0〉 to be a primitive ideal of the algebra \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\) of quantum matrices. Next, we describe all height one primes of \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\); these two problems are actually interlinked since it turns out that 〈0〉 is a primitive ideal of \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\) whenever \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\) has only finitely many height one primes. Finally, we compute the automorphism group of \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\) in the case where m ≠ n. In order to do this, we first study the action of this group on the prime spectrum of \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\). Then, by using the preferred basis of \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\) and PBW bases, we prove that the automorphism group of \({\mathcal{O}}_{q} {\left( {M_{{m,n}} } \right)}\) is isomorphic to the torus \({\left( {\mathbb{K}*} \right)}^{{m + n - 1}} \) when m ≠ n and (m,n) ≠ (1, 3),(3, 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alev, J., Chamarie, M.: Dérivations et automorphismes de quelques algèbres quantiques. Comm. Algebra 20(6), 1787–1802 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Alev, J., Dumas, F.: Rigidité des plongements des quotients primitifs minimaux de U q (sl(2)) dans l’algèbre quantique de Weyl–Hayashi. Nagoya Math. J. 143, 119–146 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Brown, K.A., Goodearl, K.R.: Lectures on algebraic quantum groups. In: Advanced Courses in Mathematics – CRM Barcelona. Birkhäuser, Basel (2002)

    Google Scholar 

  4. Cauchon, G.: Effacement des dérivations et spectres premiers des algèbres quantiques. J. Algebra 260, 476–518 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cauchon, G.: Spectre premier de \({\mathcal{O}}_{q} {\left( {M_{n} {\left( k \right)}} \right)}\), image canonique et séparation normale. J. Algebra 260, 519–569 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. De Concini, C., Kac, V.G., Procesi, C.: Some remarkable degenerations of quantum groups. Comm. Math. Phys. 157, 405–427 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gómez-Torrecillas, J., El Kaoutit, L.: The group of automorphisms of the coordinate ring of quantum symplectic space. Beiträge Algebra Geom. 43(2), 597–601 (2002)

    MATH  Google Scholar 

  8. Goodearl, K.R., Lenagan, T.H.: Quantum determinantal ideals. Duke Math. J. 103, 165–190 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goodearl, K.R., Letzter, E.S.: Prime and primitive spectra of multiparameter quantum affine spaces. In: Dlab, V., Marki, L. (eds.) Trends in Ring Theory (Miskolc, 1996). Canadian Mathematical Society Conference Proceedings Series, vol. 22, pp. 39–58 (1998)

  10. Goodearl, K.R., Letzter, E.S.: The Dixmier–Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras. Trans. Amer. Math. Soc. 352, 1381–1403 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goodearl, K.R., Letzter, E.S.: Prime factor algebras of the coordinate ring of quantum matrices. Proc. Amer. Math. Soc. 121, 1017–1025 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goodearl, K.R., Warfield, R.B.: An introduction to noncommutative Noetherian rings. In: London Mathematical Society Student Texts (2nd edn.), vol. 61. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  13. Jung, H.W.E.: Über ganze birationale transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)

    MATH  MathSciNet  Google Scholar 

  14. Launois, S.: Primitive ideals and automorphism group of \(U^{ + }_{q} {\left( {B_{2} } \right)}\). J. Algebra Appl. 6(1), 21–47 (2007)

    Article  MATH  Google Scholar 

  15. Launois, S., Lenagan, T.H., Rigal, L.: Quantum unique factorisation domains. J. London Math. Soc. (2) 74(2), 321–340 (2006)

    Google Scholar 

  16. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Wiley-Interscience, Chichester (1987)

    MATH  Google Scholar 

  17. Mosin V.G., Panov, A.N.: Division rings of quotients and central elements of multiparameter quantizations. Mat. Sb. 187(6), 53–72 (1996); translation in Sb., Math. 187(6), 835–855 (1996)

    MathSciNet  Google Scholar 

  18. Parshall, B., Wang, J.: Quantum linear groups. Mem. Amer. Math. Soc. 89(439) (1991)

  19. Rigal, L.: Spectre de l’algèbre de Weyl quantique. Beiträge Algebra Geom. 37(1), 119–148 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Shestakov, I.P., Umirbaev, U.U.: The tame and the wild automorphisms of polynomial rings in three variables. J. Amer. Math. Soc. 17(1), 197–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Launois.

Additional information

This research was supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme and by Leverhulme Research Interchange Grant F/00158/X.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Launois, S., Lenagan, T.H. Primitive Ideals and Automorphisms of Quantum Matrices. Algebr Represent Theor 10, 339–365 (2007). https://doi.org/10.1007/s10468-007-9059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-007-9059-0

Keywords

Mathematics Subject Classifications (2000)

Navigation