Skip to main content
Log in

Arithmetic quotients of the mapping class group

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

To every \({\mathbb{Q}}\)-irreducible representation r of a finite group H, there corresponds a simple factor A of \({\mathbb{Q}[H]}\) with an involution \({\tau}\). To this pair \({(A, \tau)}\), we associate an arithmetic group \({\Omega}\) consisting of all \({(2g-2) \times (2g-2)}\) matrices over a natural order \({\mathfrak{O}^{op}}\) of \({A^{op}}\) which preserve a natural skew-Hermitian sesquilinear form on \({A^{2g-2}}\). We show that if H is generated by less than g elements, then \({\Omega}\) is a virtual quotient of the mapping class group \({{\rm Mod}(\Sigma_g)}\), i.e. a finite index subgroup of \({\Omega}\) is a quotient of a finite index subgroup of \({{\rm Mod}(\Sigma_g)}\). This shows that \({{\rm Mod}(\Sigma_g)}\) has a rich family of arithmetic quotients (and “Torelli subgroups”) for which the classical quotient \({{\rm Sp}(2g, \mathbb{Z})}\) is just a first case in a list, the case corresponding to the trivial group H and the trivial representation. Other pairs of H and r give rise to many new arithmetic quotients of \({{\rm Mod}(\Sigma_g)}\) which are defined over various (subfields of) cyclotomic fields and are of type \({{\rm Sp}(2m), {\rm SO}(2m, 2m),}\) and \({{\rm SU}(m, m)}\) for arbitrarily large m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Artin, J.E. Bertin, M. Demazure, P. Gabriel, A. Grothendieck, M. Raynaud and J.-P. Serre. Schémas en groupes. Fasc. 4: Exposés 12 à 14, volume 1963/64 of Séminaire de Géométrie Algébrique de l’Institut des Hautes Études Scientifiques. Institut des Hautes Études Scientifiques, Paris (1964).

  2. Benard M.: Quaternion constituents of group algebras. Proc. Amer. Math. Soc. 30, 217–219 (1971) ISSN 0002-9939

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Benard and M.M. Schacher. The Schur subgroup. II. J. Algebra, 22(1972), 378–385. ISSN 0021-8693.

  4. J.S. Birman. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J. (1974). Annals of Mathematics Studies, No. 82.

  5. A. Borel and T.A. Springer. Rationality properties of linear algebraic groups. In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965). Amer. Math. Soc., Providence, R.I. (1966), pp. 26–32.

  6. H. Burkhardt. Grundzüge einer allgemeinen Systematik der hyperelliptischen Functionen I. Ordnung. Math. Ann., (1–2)35 (1889), 198–296. ISSN 0025-5831. doi:10.1007/BF01443877.

  7. Chevalley C., Weil A.: Über das Verhalten der Integrale 1Gattung bei Automorphismen des Funktionenkörpers. Abh. Math. Sem. Univ. Hamburg 10, 358–361 (1934)

    Article  MathSciNet  Google Scholar 

  8. N.M. Dunfield and W.P. Thurston. Finite covers of random 3-manifolds. Invent. Math., (3)166 (2006), 457–521. ISSN 0020-9910. doi:10.1007/s00222-006-0001-6.

  9. M.J. Dunwoody. Nielsen transformations. In: Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967). Pergamon, Oxford (1970), pp. 45–46.

  10. M.J. Evans. T-systems of certain finite simple groups. Math. Proc. Cambridge Philos. Soc., (1)113 (1993), 9–22. ISSN 0305-0041. doi:10.1017/S0305004100075745.

  11. B. Farb and R.K. Dennis. Noncommutative algebra, volume 144 of Graduate Texts in Mathematics. Springer-Verlag, New York (1993). ISBN 0-387-94057-X. doi:10.1007/978-1-4612-0889-1.

  12. B. Farb and D. Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (2012). ISBN 978-0-691-14794-9.

  13. K.L. Fields. On the Brauer-Speiser theorem. Bull. Amer. Math. Soc., 77 (1971), 223. ISSN 0002-9904.

  14. Gilman R.: Finite quotients of the automorphism group of a free group. Canad. J. Math. 29(3), 541–551 (1977) ISSN 0008-414X

    Article  MATH  MathSciNet  Google Scholar 

  15. H.B. Griffiths. Automorphisms of a 3-dimensional handlebody. Abh. Math. Sem. Univ. Hamburg, Vol. 26 (1963/1964). pp. 191–210. ISSN 0025-5858.

  16. F. Grunewald and A. Lubotzky. Linear representations of the automorphism group of a free group. Geom. Funct. Anal., (5)18 (2009), 1564–1608. ISSN 1016-443X. doi:10.1007/s00039-009-0702-2.

  17. U. Hamenstädt and S. Hensel. The geometry of the handlebody groups I: distortion. J. Topol. Anal., (1)4 (2012), 71–97. ISSN 1793-5253. doi:10.1142/S1793525312500070.

  18. U. Hamenstädt and S. Hensel. Isoperimetric inequalities for the handlebody groups. Trans. Amer. Math. Soc., (10)365 (2013), 5313–5327. ISSN 0002-9947. doi:10.1090/S0002-9947-2012-05808-9.

  19. J. Hempel. Intersection calculus on surfaces with applications to 3-manifolds. Mem. Amer. Math. Soc., (282)43 (1983), vi+48. ISSN 0065-9266. doi:10.1090/memo/0282.

  20. Jaco W.: Heegaard splittings and splitting homomorphisms. Trans. Amer. Math. Soc. 144, 365–379 (1969) ISSN 0002-9947

    Article  MATH  MathSciNet  Google Scholar 

  21. G. James and M. Liebeck. Representations and characters of groups. Cambridge University Press, New York, second edition (2001). ISBN 0-521-00392-X.

  22. G.J. Janusz. The Schur group of cyclotomic fields. J. Number Theory, (3)7 (1975), 345–352. ISSN 0022-314X.

  23. M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol. The book of involutions, volume 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1998). ISBN 0-8218-0904-0. With a preface in French by J. Tits.

  24. T. Koberda. Asymptotic linearity of the mapping class group and a homological version of the Nielsen-Thurston classification. Geom. Dedicata, 156 (2012), 13–30. ISSN 0046-5755. doi:10.1007/s10711-011-9587-y.

  25. Korkmaz M.: On cofinite subgroups of mapping class groups. Turkish J. Math. 27(1), 115–123 (2003) ISSN 1300-0098

    MATH  MathSciNet  Google Scholar 

  26. E. Looijenga. Prym representations of mapping class groups. Geom. Dedicata, (1)64 (1997), 69–83. ISSN 0046-5755. doi:10.1023/A:1004909416648.

  27. A. Lubotzky. Dynamics of Aut(F N ) actions on group presentations and representations. In: Geometry, rigidity, and group actions. Chicago Lectures in Math. Univ. Chicago Press, Chicago, IL (2011), pp. 609–643.

  28. A. Lubotzky and C. Meiri. Sieve methods in group theory II: the mapping class group. Geom. Dedicata, 159 (2012), 327–336. ISSN 0046-5755. doi:10.1007/s10711-011-9662-4.

  29. J. Malestein and J. Souto. On genericity of pseudo-Anosovs in the Torelli group. Int. Math. Res. Not. IMRN, (6) 2013, 1434–1449. ISSN 1073-7928.

  30. G.A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1991). ISBN 3-540-12179-X.

  31. G. Masbaum and A.W. Reid. All finite groups are involved in the mapping class group. Geom. Topol., (3)16 (2012), 1393–1411. ISSN 1465-3060. doi:10.2140/gt.2012.16.1393.

  32. J.D. McCarthy. On the first cohomology group of cofinite subgroups in surface mapping class groups. Topology, (2)40 (2001), 401–418. ISSN 0040-9383. doi:10.1016/S0040-9383(99)00066-X.

  33. D.R. McMillan, Jr. Homeomorphisms on a solid torus. Proc. Amer. Math. Soc., 14 (1963), 386–390. ISSN 0002-9939.

  34. R. Mollin. The Schur group of a field of characteristic zero. Pacific J. Math., (2)76 (1978), 471–478. ISSN 0030-8730. URL http://projecteuclid.org/getRecord?id=euclid.pjm/1102806834.

  35. V. Platonov and A. Rapinchuk. Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA (1994). ISBN 0-12-558180-7. Translated from the 1991 Russian original by Rachel Rowen.

  36. A. Putman and B. Wieland. Abelian quotients of subgroups of the mappings class group and higher Prym representations. J. Lond. Math. Soc. (2), (1) 88 (2013), 79–96. ISSN 0024-6107. doi:10.1112/jlms/jdt001.

  37. M.S. Raghunathan. A note on generators for arithmetic subgroups of algebraic groups. Pacific J. Math., (2) 152 (1992), 365–373. ISSN 0030-8730. URL http://projecteuclid.org/getRecord?id=euclid.pjm/1102636172.

  38. M.S. Raghunathan. The congruence subgroup problem. Proc. Indian Acad. Sci. Math. Sci., (4) 114 (2004), 299–308. ISSN 0253-4142. doi:10.1007/BF02829437.

  39. K. Reidemeister. Homotopiegruppen von komplexen. Abh. Math. Sem. Univ. Hamburg, (1) 10 (1934), 211–215. ISSN 0025-5858. doi:10.1007/BF02940675.

  40. I. Reiner. Maximal orders. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York (1975). London Mathematical Society Monographs, No. 5.

  41. Rosenlicht M.: Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. 43(4), 25–50 (1957) ISSN 0003-4622

    Article  MATH  MathSciNet  Google Scholar 

  42. Schacher M.M.: More on the Schur subgroup. Proc. Amer. Math. Soc. 31, 15–17 (1972) ISSN 0002-9939

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Tits. Classification of algebraic semisimple groups. In: Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965). Amer. Math. Soc., Providence, R.I. (1966), pp. 33–62.

  44. T.N. Venkataramana. On systems of generators of arithmetic subgroups of higher rank groups. Pacific J. Math., (1)1661994, 193–212. ISSN 0030-8730. URL http://projecteuclid.org/getRecord?id=euclid.pjm/1102621249.

  45. H. Zieschang. Über einfache Kurven auf Vollbrezeln. Abh. Math. Sem. Univ. Hamburg, 25 (1961/1962), 231–250. ISSN 0025-5858

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Malestein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grunewald, F., Larsen, M., Lubotzky, A. et al. Arithmetic quotients of the mapping class group. Geom. Funct. Anal. 25, 1493–1542 (2015). https://doi.org/10.1007/s00039-015-0352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0352-5

Keywords

Navigation