Skip to main content
Log in

Nonlinear Poisson autoregression

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We study statistical properties of a class of non-linear models for regression analysis of count time series. Under mild conditions, it is shown that a perturbed version of the model is geometrically ergodic and possesses moments of any order. This result turns out to be instrumental on deriving large sample properties of the maximum likelihood estimators of the regression parameters. The theory is illustrated with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkes I., Horváth L., Kokoszka P. (2003) GARCH processes: structure and estimation. Bernoulli 9: 201–227

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell P.J., Davis R.A. (1991) Time series: data analysis and theory (2nd ed). Springer, New York

    Google Scholar 

  • Brumback B.A., Ryan L.M., Schwartz J.D., Neas L.M., Stark P.C., Burge H.A. (2000) Transitional regression models with application to environmental time series. Journal of the American Statistical Association 85: 16–27

    Article  Google Scholar 

  • Chen C.W.S., Gerlach R., Choy B., Lin C. (2010) Estimation and inference for exponential smooth transition nonlinear volatility models.. Journal of Statistical Planning and Inference 140: 719–733

    Article  MathSciNet  MATH  Google Scholar 

  • Cox D.R. (1981) Statistical analysis of time series: some recent developments. Scandinavian Journal of Statistics 8: 93–115

    MATH  Google Scholar 

  • Davis R.A., Dunsmuir W.T.M., Streett S.B. (2003) Observation-driven models for Poisson counts. Biometrika 90: 777–790

    Article  MathSciNet  Google Scholar 

  • Doukhan, P., Fokianos, K., Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions Statistics & Probability Letters (to appear).

  • Fahrmeir L., Tutz G. (2001) Multivariate statistical modelling based on generalized linear models (2nd ed). Springer, New York

    MATH  Google Scholar 

  • Fan J., Yao Q. (2003) Nonlinear time series. Springer-Verlag, New York

    MATH  Google Scholar 

  • Fokianos K., Kedem B. (2004) Partial likelihood inference for time series following generalized linear models. Journal of Time Series Analysis 25: 173–197

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K., Tjøstheim D. (2011) Log-linear Poisson autoregression. Journal of Multivariate Analysis 102: 563–578

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos K., Rahbek A., Tjøstheim D. (2009) Poisson autoregression. Journal of the American Statistical Association 104: 1430–1439

    Article  MathSciNet  MATH  Google Scholar 

  • Fokianos, K., Rahbek A., Tjøstheim, D. (2009b). Poisson autoregression (complete version). http://pubs.amstat.org/toc/jasa/104/488.

  • Francq C., Zakoïan J.-M. (2004) Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10: 605–637

    Article  MathSciNet  MATH  Google Scholar 

  • Franke, J. (2010). Weak dependence of functional INGARCH processes (unpublished manuscript).

  • Gao J., King M., Lu Z., Tjøstheim D. (2009) Specification testing in nonlinear and nonstationary time series regression. Annals of Statistics 37: 3893–3928

    Article  MathSciNet  MATH  Google Scholar 

  • Haggan V., Ozaki T. (1981) Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model. Biometrika 68: 189–196

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen S.T., Rahbek A. (2007) On the law of large numbers for (geometrically) ergodic Markov chains. Econometric Theory 23: 761–766

    Article  MathSciNet  MATH  Google Scholar 

  • Jung R.C., Kukuk M., Liesenfeld R. (2006) Time series of count data: modeling, estimation and diagnostics. Computational Statistics & Data Analysis 51: 2350–2364

    Article  MathSciNet  MATH  Google Scholar 

  • Kedem B., Fokianos K. (2002) Regression models for time series analysis. Hoboken, NJ, Wiley

    Book  MATH  Google Scholar 

  • Li W.K. (1994) Time series models based on generalized linear models: some further results. Biometrics 50: 506–511

    Article  MATH  Google Scholar 

  • MacDonald, I. L., Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued Time Series. London: Chapman & Hall.

  • Meitz M., Saikonnen P. (2008) Ergodicity, mixing and existence of moments of a class of Markov models with applications to GARCH and ACD models. Econometric Theory 24: 1291–1320

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn S.P., Tweedie R.L. (1993) Markov Chains and stochastic stability. Springer, London

    Book  MATH  Google Scholar 

  • Neumann M. (2011) Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17: 1268–1284

    Article  MathSciNet  MATH  Google Scholar 

  • Teräsvirta T., Tjøstheim T., Granger C.W.J. (2010) Modelling nonlinear economic time series. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tong H. (1990) Nonlinear time series: a dynamical system approach. Oxford University Press, New York

    Google Scholar 

  • Zeger S.L., Qaqish B. (1988) Markov regression models for time series: a quasi-likelihood approach. Biometrics 44: 1019–1031

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Fokianos.

About this article

Cite this article

Fokianos, K., Tjøstheim, D. Nonlinear Poisson autoregression. Ann Inst Stat Math 64, 1205–1225 (2012). https://doi.org/10.1007/s10463-012-0351-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-012-0351-3

Keywords

Navigation