Skip to main content
Log in

Internet of Low-Altitude UAVs (IoLoUA): a methodical modeling on integration of Internet of “Things” with “UAV” possibilities and tests

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Evidence of the IoT is expanding the number of connected devices, including UAVs. UAVs overcome the flaws in the physical IoT infrastructure already in place. Low-altitude views are expected to be dominant swiftly in urban areas. In a short period of time, they are able to cover a large area and distribute goods and information around the globe. Additionally, how to provide a safe and secure UAV operation in high-level traffic circumstances is also a topic of investigation. When operating an UAV in a limited area, the IoLoUA system is used to maintain order. Additionally, it aids with node exploration. Basic principles that can be used to create new structural designs are analysed for both networks (IoLoUA). There has been an explanation of the IoLoUA strategy’s approach to implementation so far. Among the issues covered in this article are UAV-generated IoT data collection and delivery, security threats, and typical workflow approaches. This work presents a theoretical model of future design evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aadil F, Raza A, Khan MF, Maqsood M, Mehmood I, Rho S (2018) Energy aware cluster-based routing in flying ad-hoc networks. Sensors 18(5):1413

    Article  Google Scholar 

  • Abeywickrama HV, Jayawickrama BA, He Y, Dutkiewicz E (2018) Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance. IEEE Access 6:58383–58394

    Article  Google Scholar 

  • Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

    Article  Google Scholar 

  • Ali H, Shahzad W, Khan FA (2012) Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization. Appl Soft Comput 12(7):1913–1928

    Article  Google Scholar 

  • Al-Jaroodi J, Mohamed N (2019) Blockchain in industries: a survey. IEEE Access 7:36500–36515

    Article  Google Scholar 

  • Almalki FA, Soufiene BO, Alsamhi SH, Sakli H (2021) A low-cost platform for environmental smart farming monitoring system based on iot and uavs. Sustainability 13(11):5908

    Article  Google Scholar 

  • Alsamhi S , Ma O, Ansari M (2018) Predictive estimation of the optimal signal strength from unmanned aerial vehicle over internet of things using ann. arXiv preprint arXiv:1805.07614)

  • Alsamhi S, Rajput N (2014) Performance and analysis of propagation models for efficient handoff in high altitude platform system to sustain qos. 2014 ieee students’ conference on electrical, electronics and computer science (pp. 1-6)

  • Alsamhi SH, Afghah F, Sahal R, Hawbani A, Al-qaness A, Lee B, Guizani M (2021) Green internet of things using uavs in b5g networks: A review of applications and strategies. Ad Hoc Networks) 102505

  • Alsamhi SH, Almalki F, Ma O, Ansari MS, Lee B (2021) Predictive estimation of optimal signal strength from drones over iot frameworks in smart cities. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2021.3074442

    Article  Google Scholar 

  • Alsamhi SH, Almalki FA, Ma O, Ansari MS, Angelides MC (2020) Performance optimization of tethered balloon technology for public safety and emergency communications. Telecommun Syst 75(2):235–244

    Article  Google Scholar 

  • Alsamhi SH, Lee B, Guizani M, Kumar N, Qiao Y, Liu X (2021) Blockchain for decentralized multi-drone to combat covid-19 and future pandemics: framework and proposed solutions. Trans Emerg Telecommun Technol 32(9):4255

    Google Scholar 

  • Alsamhi SH, Ma O, Ansari MS, Almalki FA (2019) Survey on collaborative smart drones and internet of things for improving smartness of smart cities. Ieee Access 7:128125–128152

    Article  Google Scholar 

  • Alsamhi SH, Ma O, Ansari MS, Gupta SK (2019) Collaboration of drone and internet of public safety things in smart cities: an overview of qos and network performance optimization. Drones 3(1):13

    Article  Google Scholar 

  • Alsamhi SH, Rajput N (2014) Hap antenna radiation pattern for providing coverage and service characteristics. In: 2014 International Conference on Advances in Computing, Communications and Informatics (icacci) (pp 1434–1439)

  • Altawy R, Youssef AM (2016) Security, privacy, and safety aspects of civilian drones: a survey. ACM Trans Cyber-Phys Syst 1(2):1–25

    Article  Google Scholar 

  • Al-Turjman F, Alturjman S (2020) 5g/iot-enabled uavs for multimedia delivery in industry-oriented applications. Multimed Tools Appl 79(13):8627–8648

    Article  Google Scholar 

  • Alzenad M, El-Keyi A, Lagum F, Yanikomeroglu H (2017) 3-d placement of an unmanned aerial vehicle base station (uav-bs) for energy-efficient maximal coverage. IEEE Wirel Commun Lett 6(4):434–437

    Article  Google Scholar 

  • Aman W, Snekkenes E (2015) Managing security trade-offs in the internet of things using adaptive security. In: 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), pp 362–368

  • Amorim R, Nguyen H, Wigard J, Kovács IZ, Sørensen TB, Biro DZ, Mogensen P (2018) Measured uplink interference caused by aerial vehicles in lte cellular networks. IEEE Wirel Commun Lett 7(6):958–961

    Article  Google Scholar 

  • Analytics I (2018) State of the iot 2018: Number of iot devices now at 7b-market accelerating. https://iot-analytics.com/state-ofthe-iot-update-q1-q2-2018-number-of-iotdevices-now-7b/ Accessed 12 Apr 2021

  • Arafat MY, Moh S (2021) Bio-inspired approaches for energy-efficient localization and clustering in uav networks for monitoring wildfires in remote areas. IEEE Access 9:18649–18669

    Article  Google Scholar 

  • Arasteh H, Hosseinnezhad V, Loia V, Tommasetti A, Troisi O, Shafie-khah M, Siano P (2016) Iot-based smart cities: a survey. In: 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), pp 1–6

  • Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  MATH  Google Scholar 

  • Bacco M, Cassará P, Colucci M, Gotta A, Marchese M, Patrone F (2017) A survey on network architectures and applications for nanosat and uav swarms. In: International Conference on Wireless and Satellite Systems, pp 75–85

  • Bento MdF (2008) Unmanned aerial vehicles: an overview. Inside GNSS,3,1,54-61. http://www.insidegnss.com/auto/janfeb08-wp.pdf

  • Besada JA, Bergesio L, Campaña I, Vaquero-Melchor D, López-Araquistain J, Bernardos AM, Casar JR (2018) Drone mission definition and implementation for automated infrastructure inspection using airborne sensors. Sensors 18(4):1170

    Article  Google Scholar 

  • Brust MR, Danoy G, Bouvry P, Gashi D, Pathak H, Gonçalves MP (2017) Defending against intrusion of malicious uavs with networked uav defense swarms. In: 2017 IEEE 42nd Conference on Local Computer Networks Workshops (lcn workshops), pp 103–111

  • Ch R, Srivastava G, Gadekallu TR, Maddikunta PKR, Bhattacharya S (2020) Security and privacy of uav data using blockchain technology. J Inf Secur Appl 55:102670

    Google Scholar 

  • Chae H, Park J, Song H, Kim Y, Jeong H (2015) The iot based automate landing system of a drone for the round-the-clock surveillance solution. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp 1575–1580

  • Challita U, Saad W, Bettstetter C (2018) Deep reinforcement learning for interference-aware path planning of cellular-connected uavs. In: 2018 IEEE International Conference on Communications (icc), pp 1–7

  • Chen K-L, Chen Y-R, Tsai Y-P, Chen N (2016) A novel wireless multifunctional electronic current transformer based on zigbee-based communication. IEEE Trans Smart Grid 8(4):1888–1897

    Article  Google Scholar 

  • Chen S, Xu H, Liu D, Hu B, Wang H (2014) A vision of iot: applications, challenges, and opportunities with china perspective. IEEE Internet Things J 1(4):349–359

    Article  Google Scholar 

  • Chiang M, Zhang T (2016) Fog and iot: an overview of research opportunities. IEEE Internet Things J 3(6):854–864

    Article  Google Scholar 

  • CISCO (2014) The internet of things reference model. http://cdn.iotwf.com/resources/71/IoTReferenceModelWhitePaperJune42014.pdf. Accessed 29 Mar 2021

  • Consortiq (2018) Short history unmanned aerial vehicles uavs. https://consortiq.com/short-history-unmanned-aerial-vehicles-uavs/?v=79cba1185463. Accessed 27 Jan 2021

  • Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of things realize its potential. Computer 49(8):112–116

    Article  Google Scholar 

  • Deepa N, Pham Q-V, Nguyen DC, Bhattacharya S, Gadekallu TR, Maddikunta PKR others (2020) A survey on blockchain for big data: Approaches, opportunities, and future directions. arXiv preprint arXiv:2009.00858)

  • Domin K, Symeonidis I, Marin E (2016) Security analysis of the drone communication protocol: Fuzzing the mavlink protocol

  • Du Y, Yang K, Wang K, Zhang G, Zhao Y, Chen D (2019) Joint resources and workflow scheduling in uav-enabled wirelessly-powered mec for iot systems. IEEE Trans Veh Technol 68(10):10187–10200

    Article  Google Scholar 

  • Erdelj M, Natalizio E, Chowdhury KR, Akyildiz IF (2017) Help from the sky: leveraging uavs for disaster management. IEEE Pervas Comput 16(1):24–32

    Article  Google Scholar 

  • Fakhrulddin SS, Gharghan SK, Al-Naji A, Chahl J (2019) An advanced first aid system based on an unmanned aerial vehicles and a wireless body area sensor network for elderly persons in outdoor environments. Sensors 19(13):2955

    Article  Google Scholar 

  • Fan C, Bao S, Tao Y, Li B, Zhao C (2019) Fuzzy reinforcement learning for robust spectrum access in dynamic shared networks. IEEE Access 7:125827–125839

    Article  Google Scholar 

  • Feng W, Wang J, Chen Y, Wang X, Ge N, Lu J (2018) Uav-aided mimo communications for 5g internet of things. IEEE Internet Things J 6(2):1731–1740

    Article  Google Scholar 

  • Ferati M, Kurti A, Vogel B, Raufi B (2016) Augmenting requirements gathering for people with special needs using iot: a position paper. In: Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, pp 48–51

  • Fernández-Caramés TM, Blanco-Novoa O, Froiz-Míguez I, Fraga-Lamas P (2019) Towards an autonomous industry 4.0 warehouse: A uav and blockchain-based system for inventory and traceability applications in big data-driven supply chain management. Sensors 19(10): 2394

  • Frew EW, Brown TX (2009) Networking issues for small unmanned aircraft systems. J Intell Rob Syst 54(1):21–37

    Article  Google Scholar 

  • Gandotra P, Jha RK (2016) Device-to-device communication in cellular networks: a survey. J Netw Comput Appl 71:99–117

    Article  Google Scholar 

  • gsma (2010) Characteristics of unmanned aircraft systems and spectrum requirements to support their safe operation in nonsegregated airspace. http://www.itu.int/pub/R-REP-M.2171/fr. Accessed 05 Apr 2021

  • gsma (2014) Connected living: mobilising the internet of things. http://www.gsma.com/connectedliving/. Accessed 27 Oct 2020

  • GSMA (2018) Gsma network slicing: Use case requirements. https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/NS-Final.pdf. Accessed 17 Feb 2021

  • Gupta A, Sundhan S, Gupta SK, Alsamhi S, Rashid M (2020) Collaboration of uav and hetnet for better qos: a comparative study. Int J Veh Inf Commun Syst 5(3):309–333

    Google Scholar 

  • Hayat S, Yanmaz E, Muzaffar R (2016) Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun Surv Tutor 18(4):2624–2661

    Article  Google Scholar 

  • Hellaoui H, Chelli A, Bagaa M, Taleb T (2018) Towards mitigating the impact of uavs on cellular communications. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp 1–7

  • Hua M, Wang Y, Lin M, Li C, Huang Y, Yang L (2019) Joint comp transmission for uav-aided cognitive satellite terrestrial networks. IEEE Access 7:14959–14968

    Article  Google Scholar 

  • Islam A, Rahim T, Masuduzzaman M, Shin SY (2021) A blockchain-based artificial intelligence-empowered contagious pandemic situation supervision scheme using internet of drone things. IEEE Wirel Commun 28(4):166–173

    Article  Google Scholar 

  • Islam A, Shin SY (2019) Buav: a blockchain based secure uav-assisted data acquisition scheme in internet of things. J Commun Networks 21(5):491–502

    Article  Google Scholar 

  • Islam A, Shin SY (2019) Bus: a blockchain-enabled data acquisition scheme with the assistance of uav swarm in internet of things. IEEE Access 7:103231–103249

    Article  Google Scholar 

  • Islam A, Shin SY (2020) A blockchain-based secure healthcare scheme with the assistance of unmanned aerial vehicle in internet of things. Comput Electr Eng 84:106627

    Article  Google Scholar 

  • ISO (2018). Iso/iec 30141:2018 internet of things (lot)-reference architecture; standard. International Organization for Standardization)

  • Jawhar I, Mohamed N, Al-Jaroodi J, Agrawal DP, Zhang S (2017) Communication and networking of uav-based systems: classification and associated architectures. J Netw Comput Appl 84:93–108

    Article  Google Scholar 

  • Jawhar I, Mohamed N, Al-Jaroodi J, Zhang S (2013) Data communication in linear wireless sensor networks using unmanned aerial vehicles. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp 492–499

  • Jia Z, Sheng M, Li J, Niyato D, Han Z (2020) Leo satellite-assisted uav: Joint trajectory and data collection for internet of remote things in 6g aerial access networks. IEEE Internet Things J

  • Jindal A, Aujla GS, Kumar N (2019) Survivor: a blockchain based edge-as-a-service framework for secure energy trading in sdn-enabled vehicle-to-grid environment. Comput Netw 153:36–48

    Article  Google Scholar 

  • Jing Q, Vasilakos AV, Wan J, Lu J, Qiu D (2014) Security of the internet of things: perspectives and challenges. Wireless Netw 20(8):2481–2501

    Article  Google Scholar 

  • Kasinathan P, Pastrone C, Spirito MA, Vinkovits M (2013) Denial-of-service detection in 6lowpan based internet of things. In: 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (wimob), pp 600–607

  • Khan R, Khan SU, Zaheer R, Khan S (2012) Future internet: the internet of things architecture, possible applications and key challenges. In: 2012 10th International Conference on Frontiers of Information Technology, pp 257–260

  • Khanna A, Kaur S (2020) Internet of things (iot), applications and challenges: a comprehensive review. Wirel Person Commun 114:1687–1762

    Article  Google Scholar 

  • Kim H, Ben-Othman J (2018) A collision-free surveillance system using smart uavs in multi domain iot. IEEE Commun Lett 22(12):2587–2590

    Article  Google Scholar 

  • Kothmayr T, Schmitt C, Hu W, Brünig M, Carle G (2013) Dtls based security and two-way authentication for the internet of things. Ad Hoc Netw 11(8):2710–2723

    Article  Google Scholar 

  • Kumar R (1997) Tactical reconnaissance: Uavs versus manned aircraft (Tech. Rep.). AIR COMMAND AND STAFF COLL MAXWELL AFB AL

  • Lagkas T, Argyriou V, Bibi S, Sarigiannidis P (2018) Uav iot framework views and challenges: towards protecting drones as things. Sensors 18(11):4015

    Article  Google Scholar 

  • Li J, Zhou Y, Lamont L (2013) Communication architectures and protocols for networking unmanned aerial vehicles. In: 2013 IEEE Globecom Workshops (GC WKSHPS), pp 1415–1420

  • Li J, Zhou Y, Lamont L (2013) Communication architectures and protocols for networking unmanned aerial vehicles. In: 2013 IEEE Globecom Workshops (GC WKSHPS), pp 1415–1420

  • Li L, Halpern JY, Bahl P, Wang Y-M, Wattenhofer R (2005) A cone-based distributed topology-control algorithm for wireless multi-hop networks. IEEE/ACM Trans Netw 13(1):147–159

    Article  MATH  Google Scholar 

  • Li M, Hong Y, Zeng C, Song Y, Zhang X (2018) Investigation on the uav-to-satellite optical communication systems. IEEE J Sel Areas Commun 36(9):2128–2138

    Article  Google Scholar 

  • Li T, Ota K, Wang T, Li X, Cai Z, Liu A (2019) Optimizing the coverage via the uavs with lower costs for information-centric internet of things. IEEE Access 7:15292–15309

    Article  Google Scholar 

  • Li X, Yao H, Wang J, Wu S, Jiang C, Qian Y (2019) Rechargeable multi-uav aided seamless coverage for qos-guaranteed iot networks. IEEE Internet Things J 6(6):10902–10914

    Article  Google Scholar 

  • Li X, Yao H, Wang J, Xu X, Jiang C, Hanzo L (2019) A near-optimal uav-aided radio coverage strategy for dense urban areas. IEEE Trans Veh Technol 68(9):9098–9109

    Article  Google Scholar 

  • Li Y, Cai L (2017) Uav-assisted dynamic coverage in a heterogeneous cellular system. IEEE Netw 31(4):56–61

    Article  Google Scholar 

  • Lin C, He D, Kumar N, Choo K-KR, Vinel A, Huang X (2018) Security and privacy for the internet of drones: challenges and solutions. IEEE Commun Mag 56(1):64–69

    Article  Google Scholar 

  • Louis C (2018) Roundup of internet of things forecasts and market estimates. https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecastsand-market-estimates/#5fda8f287d83. Accessed 07 Mar 2021

  • Lu C (2014) Overview of security and privacy issues in the internet of things, 1-11. Mahalle P, Babar S, Prasad NR Prasad) 430–439

  • Manfreda S, McCabe MF, Miller PE, Lucas R, Pajuelo Madrigal V, Mallinis G et al (2018) On the use of unmanned aerial systems for environmental monitoring. Remote Sens 10(4):641

    Article  Google Scholar 

  • Marchese M, Moheddine A, Patrone F (2019) Iot and uav integration in 5g hybrid terrestrial-satellite networks. Sensors 19(17):3704

    Article  Google Scholar 

  • Martins R, Dias PS , Marques ER, Pinto J, Sousa JB, Pereira FL (2009) Imc: A communication protocol for networked vehicles and sensors. Oceans 2009-europe, pp 1–6

  • Massis B (2016) The internet of things and its impact on the library. New library world

  • Moosavi SR, Gia TN, Rahmani A-M, Nigussie E, Virtanen S, Isoaho J, Tenhunen H (2015) Sea: a secure and efficient authentication and authorization architecture for iot-based healthcare using smart gateways. Procedia Comput Sci 52:452–459

    Article  Google Scholar 

  • Motlagh NH, Bagaa M, Taleb T (2016) Uav selection for a uav-based integrative iot platform. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp 1–6

  • Motlagh NH, Bagaa M, Taleb T (2017) Uav-based iot platform: a crowd surveillance use case. IEEE Commun Mag 55(2):128–134

    Article  Google Scholar 

  • Motlagh NH, Taleb T, Arouk O (2016) Low-altitude unmanned aerial vehicles-based internet of things services: comprehensive survey and future perspectives. IEEE Internet Things J 3(6):899–922

    Article  Google Scholar 

  • Mozaffari M, Saad W, Bennis M, Debbah M (2016) Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun Lett 20(8):1647–1650

    Article  Google Scholar 

  • Mozaffari M, Saad W, Bennis M, Debbah M (2016). Mobile internet of things: can uavs provide an energy-efficient mobile architecture? In: 2016 IEEE Global Communications Conference (GLOBECOM), pp 1–6

  • Mozaffari M, Saad W, Bennis M, Nam Y-H, Debbah M (2019) A tutorial on uavs for wireless networks: applications, challenges, and open problems. IEEE Commun Surv Tutor 21(3):2334–2360

    Article  Google Scholar 

  • Nassi B, Shabtai A, Masuoka R, Elovici Y (2019) Sok-security and privacy in the age of drones: threats, challenges, solution mechanisms, and scientific gaps. arXiv preprint arXiv:1903.05155)

  • Nasution T, Siregar I, Yasir M (2017) Uav telemetry communications using zigbee protocol. J Phys 914:012001

    Google Scholar 

  • Peng Z, Kato T, Takahashi H, Kinoshita T (2015) Intelligent home security system using agent-based iot devices. In: 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), pp 313–314

  • Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2013) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutor 16(1):414–454

    Article  Google Scholar 

  • Réti I, Lukátsi M, Vanek B, Gőzse I, Bakos Á, Bokor J (2013) Smart mini actuators for safety critical unmanned aerial vehicles. In: 2013 Conference on Control and Fault-Tolerant Systems (SYSTOL), pp 474–479

  • Saif A, Dimyati K, Noordin KA, Alsamhi SH, Hawbani A (2021) Multi-uav and sar collaboration model for disaster management in b5g networks. Internet Technol Lett. https://doi.org/10.1002/itl2.310

    Article  Google Scholar 

  • Saif A, Dimyati K, Noordin KA, Shah NSM, Alsamhi S, Abdullah Q (2021) Energy-efficient tethered uav deployment in b5g for smart environments and disaster recovery. In: 2021 1st International Conference on Emerging Smart Technologies and Applications (ESMARTA), pp 1–5

  • Saif A, Dimyati K, Noordin KA, Shah NSM, Alsamhi S, Abdullah Q, Farah N (2021) Distributed clustering for user devices under uav coverage area during disaster recovery. In: 2021 IEEE International Conference in Power Engineering Application (ICPEA), pp 143–148

  • Saif A, Dimyati KB, Noordin KAB, Shah NSM, Alsamhi S, Abdullah Q, Farah N (2021). Distributed clustering for user devices under unmanned aerial vehicle coverage area during disaster recovery. arXiv preprint arXiv:2103.07931)

  • Samir Labib N, Danoy G, Musial J, Brust MR, Bouvry P (2019) Internet of unmanned aerial vehicles-a multilayer low-altitude airspace model for distributed uav traffic management. Sensors 19(21):4779

    Article  Google Scholar 

  • Samir Labib N, Liu C, Esmaeilzadeh Dilmaghani S, Brust MR, Danoy G, Bouvry P (2018) White paper: data protection and privacy in smart ict-scientific research and technical standardization (Tech. Rep.). ILNAS

  • Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39

    Article  Google Scholar 

  • Shaikh Z, Baidya S, Levorato M (2018) Robust multi-path communications for uavs in the urban iot. In: 2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), pp 1–5

  • Shariatmadari H, Ratasuk R, Iraji S, Laya A, Taleb T, Jäntti R, Ghosh A (2015) Machine-type communications: current status and future perspectives toward 5g systems. IEEE Commun Mag 53(9):10–17

    Article  Google Scholar 

  • Sharma V, You I, Kumar R (2016) Energy efficient data dissemination in multi-uav coordinated wireless sensor networks. Mobile Information Systems 2016

  • Sharp CS, Shakernia O, Sastry SS (2001) A vision system for landing an unmanned aerial vehicle. Proceedings 2001 icra. In: IEEE International Conference on Robotics and Automation (Cat. No. 01ch37164) (Vol 2, pp 1720–1727)

  • Singh D, Tripathi G, Jara AJ (2014) A survey of internet-of-things: Future vision, architecture, challenges and services. In: 2014 IEEE World Forum on Internet of Things (WF-IOT), pp 287–292

  • Singh PJ, de Silva R, Seher I (2016) Comparison of communication protocols for uavs and vanets. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp 616–619

  • Srivastava A, Mishra A, Upadhyay B, kumar Yadav A (2014) Survey and overview of mobile ad-hoc network routing protocols. In: 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), pp 1–6

  • Srivastava A, Prakash J (2020) Role of antenna in flying adhoc networks communication: Provocation and open issues. In: International Conference on Intelligent Systems Design and Applications, pp 711–721

  • Srivastava A, Prakash J (2021) Future fanet with application and enabling techniques: anatomization and sustainability issues. Comput Sci Rev 39:100359

    Article  MathSciNet  Google Scholar 

  • Srivastava A, Prakash J (2022) Cdf based dual transform approach for uav video visual enhancement in rgb model. International Journal of System Assurance Engineering and Management)1-13

  • Srivastava A, Prakash J (2022) Edge enhancement by noise suppression in hsi color model of uav video with adaptive thresholding. Wirel Pers Commun 124(1):163–186

    Article  Google Scholar 

  • Su W, Zhang M, Bian D, Liu Z, Huang J, Wang W, Guo H (2019) Phenotyping of corn plants using unmanned aerial vehicle (uav) images. Remote Sens 11(17):2021

    Article  Google Scholar 

  • Sun Z, Wang P, Vuran MC, Al-Rodhaan MA, Al-Dhelaan AM, Akyildiz IF (2011) Bordersense: Border patrol through advanced wireless sensor networks. Ad Hoc Netw 9(3):468–477

    Article  Google Scholar 

  • Syed F, Gupta SK, Hamood Alsamhi S, Rashid M, Liu X (2021) A survey on recent optimal techniques for securing unmanned aerial vehicles applications. Trans Emerg Telecommun Technol 32(7):e4133

    Google Scholar 

  • Tao F, Zhang H, Liu A, Nee AY (2018) Digital twin in industry: state-of-the-art. IEEE Trans Ind Inf 15(4):2405–2415

    Article  Google Scholar 

  • Thompson RM (2012) Drones in domestic surveillance operations: Fourth amendment implications and legislative responses

  • Truong H-L, Dustdar S (2015) Principles for engineering iot cloud systems. IEEE Cloud Comput 2(2):68–76

    Article  Google Scholar 

  • Tuna G, Nefzi B, Conte G (2014) Unmanned aerial vehicle-aided communications system for disaster recovery. J Netw Comput Appl 41:27–36

    Article  Google Scholar 

  • Upadhyay B, Srivastava A, Mishra A, Upadhyay S (2014) Distinctive approach for quality of service (qos) routing in manet. In: 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), pp 1–4

  • Vanitha N, Padmavathi G (2018) A comparative study on communication architecture of unmanned aerial vehicles and security analysis of false data dissemination attacks. In: 2018 International Conference on Current Trends Towards Converging Technologies (ICCTCT), pp 1–8

  • Vermesan O, Friess P et al (2014) Internet of things-from research and innovation to market deployment, vol 29. River Publishers, Aalborg

    Google Scholar 

  • Vučinić M, Tourancheau B, Rousseau F, Duda A, Damon L, Guizzetti R (2015) Oscar: object security architecture for the internet of things. Ad Hoc Netw 32:3–16

    Article  Google Scholar 

  • Wang J, Jiang C, Wei Z, Pan C, Zhang H, Ren Y (2018) Joint uav hovering altitude and power control for space-air-ground iot networks. IEEE Internet Things J 6(2):1741–1753

    Article  Google Scholar 

  • Wang L.-H, Chen T.-Y, Lin K.-H, Fang Q, Lee S.-Y (2014) Implementation of a wireless ecg acquisition soc for ieee 802.15. 4 (zigbee) applications. IEEE J Biomed Health Inform 19(1):247–255

    Article  Google Scholar 

  • Wang X, Feng W, Chen Y, Ge N (2018) Coverage optimization for uav-aided internet of things with partial channel knowledge. J Commun Inf Netw 3(4):55–63

    Article  Google Scholar 

  • Whitmore A, Agarwal A, Da Xu L (2015) The internet of things-a survey of topics and trends. Inf Syst Front 17(2):261–274

    Article  Google Scholar 

  • Wood A.D, Stankovic J.A (2002) Denial of service in sensor networks. Computer 35(10):54–62

    Article  Google Scholar 

  • Wu H, Tao X, Zhang N, Shen X (2018) Cooperative uav cluster-assisted terrestrial cellular networks for ubiquitous coverage. IEEE J Sel Areas Commun 36(9):2045–2058

    Article  Google Scholar 

  • Yajnanarayana V, Wang Y-PE , Gao S, Muruganathan S, Ericsson XL (2018) Interference mitigation methods for unmanned aerial vehicles served by cellular networks. In: 2018 IEEE 5g World Forum (5gwf), pp 118–122

  • Yan S, Peng M, Cao X (2018) A game theory approach for joint access selection and resource allocation in uav assisted iot communication networks. IEEE Internet Things J 6(2):1663–1674

    Article  Google Scholar 

  • Yang J, Poellabauer C, Mitra P, Neubecker C (2020) Beyond beaconing: emerging applications and challenges of ble. Ad Hoc Netw 97:102015

    Article  Google Scholar 

  • Yoo S-J, Park J-H, Kim S-H, Shrestha A (2016) Flying path optimization in uav-assisted iot sensor networks. ICT Express 2(3):140–144

    Article  Google Scholar 

  • Yu Y, Lee S , Lee J, Cho K, Park S (2016) Design and implementation of wired drone docking system for cost-effective security system in iot environment. In: 2016 IEEE International Conference on Consumer Electronics (ICCE), pp 369–370

  • Zaidi S, Atiquzzaman M, Calafate CT (2021) Internet of flying things (ioft): a survey. Comput Commun 165:53–74

    Article  Google Scholar 

  • Zhan C, Zeng Y, Zhang R (2017) Energy-efficient data collection in uav enabled wireless sensor network. IEEE Wirel Commun Lett 7(3):328–331

    Article  Google Scholar 

  • Zhang J, Chen T, Zhong S, Wang J, Zhang W, Zuo X, Hanzo L (2019) Aeronautical ad hoc networking for the internet above the clouds. Proc IEEE 107(5):868–911

    Article  Google Scholar 

  • Zhang Y, Shen Y, Wang H, Yong J, Jiang X (2015) On secure wireless communications for iot under eavesdropper collusion. IEEE Trans Autom Sci Eng 13(3):1281–1293

    Article  Google Scholar 

  • Zhao J, Gao F, Wu Q, Jin S, Wu Y, Jia W (2018) Beam tracking for uav mounted satcom on-the-move with massive antenna array. IEEE J Sel Areas Commun 36(2):363–375

    Article  Google Scholar 

  • Zhao N, Cheng F, Yu FR, Tang J, Chen Y, Gui G, Sari H (2018) Caching uav assisted secure transmission in hyper-dense networks based on interference alignment. IEEE Trans Commun 66(5):2281–2294

    Article  Google Scholar 

  • Zhao N, Lu W, Sheng M, Chen Y, Tang J, Yu FR, Wong K-K (2019) Uav-assisted emergency networks in disasters. IEEE Wirel Commun 26(1):45–51

    Article  Google Scholar 

  • Zhou C, Ye H, Hu J, Shi X, Hua S, Yue J, Yang G (2019) Automated counting of rice panicle by applying deep learning model to images from unmanned aerial vehicle platform. Sensors 19(14):3106

    Article  Google Scholar 

  • Zhou Z, Feng J, Tan L, He Y, Gong J (2018) An air-ground integration approach for mobile edge computing in iot. IEEE Commun Mag 56(8):40–47

    Article  Google Scholar 

  • Zhu C, Leung VC, Shu L, Ngai ECH (2015) Green internet of things for smart world. IEEE Access 3:2151–2162

    Article  Google Scholar 

  • Zhu S, Setia S, Jajodia S (2006) Leap+ efficient security mechanisms for large-scale distributed sensor networks. ACM Trans Sens Networks 2(4):500–528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Corresponding author

Correspondence to Ashish Srivastava.

Ethics declarations

Funding

NA

Availability of data and material

NA

Code availability

NA

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Prakash, J. Internet of Low-Altitude UAVs (IoLoUA): a methodical modeling on integration of Internet of “Things” with “UAV” possibilities and tests. Artif Intell Rev 56, 2279–2324 (2023). https://doi.org/10.1007/s10462-022-10225-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10225-1

Keywords

Navigation