Skip to main content

Advertisement

Log in

Soil biological properties in multistrata successional agroforestry systems and in natural regeneration

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The diversity of cultivated plants in the agroforestry systems can create conditions to maintain the vital edaphic processes similar to natural regeneration areas. We studied agroforestry systems with five (AF5) and ten years (AF10) of age in comparison with natural regeneration areas for 10 years (NR) in the Atlantic Forest Biome in an area of environmental fragility. The microbial biomass carbon (MB-C), soil basal respiration (BResp), metabolic quotient (q-CO2) and microbial quotient (q-mic) were evaluated in the entire profile of a Typic Udorthents, obtaining stratified data in the 0–2.5; 2.5–5; 5–10; 10–15; 15–30; 30–45 and 45–60 cm layers. The NR area had the highest MB-C (866 mg C kg−1 soil) and BResp (5 mg C-CO2 kg−1 soil h−1) in the 0–2.5 cm layer in relation to the AF5 (686 mg C kg−1 soil; 4 mg C-CO2 kg−1 soil h−1) and AF10 (478 mg C kg−1 soil; 4 mg C-CO2 kg−1 soil h−1). However, the ratios did not differ among treatments, presenting average values in the profile of 7 mg C-CO2 g−1 MB-C h−1 for q-CO2 and 1.6 % for q-mic, demonstrating vital process similarity between systems. The phytosociological characteristics that interfere with the microbiological attributes were the plant species richness (0–2.5 cm) and plant diversity (2.5–5 cm). The epiedaphic fauna active in the litter was also assessed by pitfall traps and the average number of individuals per trap (238 for NR, 281 for AF5, 299 for AF10), the order richness (15 for NR; 14 for AF5, 13 for AF10) and relative frequencies did not differ among treatments, confirming that agroforests are in an ecosystem self-regulation condition function similar to natural regeneration, even with the removal of food products and income generation for the farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen´s climate classification map for Brazil. Meteorol Z. doi:10.1127/0941-2948/2013/0507 (Fast Track Article: 1–18)

    Google Scholar 

  • Anderson T, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  • Anderson T, Domsch KH (2010) Soil microbial biomass: the eco-physiological approach. Soil Biol Biochem 42:2039–2043. doi:10.1016/j.soilbio.2010.06.026

    Article  CAS  Google Scholar 

  • Aponte C, Marañón T, García LV (2010) Microbial C, N and P in soils of Mediterranean oak forests: influence of season, canopy cover and soil depth. Biogeochem 101:77–92. doi:10.1007/s10533-010-9418-5

    Article  CAS  Google Scholar 

  • Araujo ASF, Leite LFC, Iwata BF, Lira JRMA, Xavier GR, Figueiredo MVB (2012) Microbiological process in agroforestry systems. A review. Agron Sustain Dev 32:215–226. doi:10.1007/s13593-011-0026-0

    Article  CAS  Google Scholar 

  • Bae K, Lee DK, Fahey TJ, Woo SY, Quaye AK, Lee Y (2013) Seasonal variation of soil respiration rates in a secondary forest and agroforestry systems. Agrofor Syst 87:131–139. doi:10.1007/s10457-012-9530-8

    Article  Google Scholar 

  • Bardhan S, Jose S, Biswas S, Kabir K, Rogers W (2012) Homegarden agroforestry systems: an intermediary for biodiversity conservation in Bangladesh. Agrofor Syst 85:29–34. doi:10.1007/s10457-012-9515-7

    Article  Google Scholar 

  • Beare MH, Coleman DC, Crossley DA Jr, Hendrix PF, Odum EP (1995) A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant Soil 170:5–22

    Article  CAS  Google Scholar 

  • Chauvat M, Zaitsev AS, Wolters V (2003) Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137:269–276. doi:10.1007/s00442-003-1310-8

    Article  PubMed  Google Scholar 

  • Fall D, Diouf D, Zoubeirou AM, Bakhoum N, Faye A, Sall SN (2012) Effect of distance and depth on microbial biomass and mineral nitrogen content under Acacia senegal (L.) Willd. Trees. J Environ Manag 95:260–264. doi:10.1016/j.jenvman.2011.03.038

    Article  Google Scholar 

  • Fang C, Moncrieff JB (2005) The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268:243–253. doi:10.1007/s11104-004-0278-4

    Article  CAS  Google Scholar 

  • Filser J (2002) The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 46:234–245. doi:10.1078/0031-4056-00130

    Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant sucession. Oecologia 79:174–178. doi:10.1007/BF00388474

    Article  Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effect of biocidal treatments on metabolism in soil. V. A method of measuring soil biomass. Soil Biol Biochem 8:209–213. doi:10.1016/0038-0717(76)90005-5

    Article  CAS  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85:1–8. doi:10.1007/s10457-012-9517-5

    Article  Google Scholar 

  • Manhães CMC, Gama-Rodrigues EF, Moço MKS, Gama-Rodrigues AC (2013) Meso- and macrfauna in the soil and litter of leguminous trees in a degraded pasture in Brazil. Agrofor Syst 87:993–1004. doi:10.1007/s10457-013-9614-0

    Article  Google Scholar 

  • Moço MKS, Gama-Rodrigues EEF, Gama-Rodrigues EAC, Machado RCR, Baligar EVC (2009) Soil ad litter fauna of cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 76:127–138. doi:10.1007/s10457-008-9178-6

    Article  Google Scholar 

  • Pauli N, Barrios E, Conacher AJ, Oberthürc T (2011) Soil macrofauna in agricultural landscapes dominated by the Quesungual Slash-and-Mulch, Agroforestry System, western Honduras. Appl Soil Ecol 47:119–132. doi:10.1016/j.apsoil.2010.11.005

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MO (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2010.02.005

    Article  Google Scholar 

  • Rousseau L, Fonte SJ, Téllez O, Van der Hoek R, Lavelle P (2013) Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol Indic 27:71–82. doi:10.1016/j.ecolind.2012.11.020

    Article  CAS  Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2005) Seasonal activity of the spider mite predators (Stethorus punctillum) (Coleoptera: Coccinellidae) and (Neoseiulus fallacis) (Acarina: Phytoseiidae) in raspberry, two predators of (Tetranychus mcdanieli) (Acarina: Tetranychidae). Biol Control 34:47–57. doi:10.1016/j.biocontrol.2005.03.012

    Article  Google Scholar 

  • Salamon J-A, Scheu S, Schaefer M (2008) The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia 51:385–396. doi:10.1016/j.pedobi.2007.10.002

    Article  Google Scholar 

  • Scharroba A, Dibbern D, Hünninghaus M, Kramer S, Moll J, Butenschoen O, Bonkowski M, Buscot F, Kandeler E, Koller R, Krüger D, Lueders T, Scheu S, Ruess LE (2012) Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biol Biochem 50:1–11. doi:10.1016/j.soilbio.2012.03.002

    Article  CAS  Google Scholar 

  • Shepherd GJ (1995) FITOPAC 1. Manual de usuário. UNICAMP, Departamento de Botânica, Campinas

    Google Scholar 

  • Silva EE, Azevedo PHS, De-Polli H (2007a) Determinação do Carbono da Biomassa Microbiana do Solo (MB-C). Embrapa Agrobiologia, Seropédica

    Google Scholar 

  • Silva EE, Azevedo PHS, De-Polli H (2007b) Determinação da respiração basal (RBS) e quociente metabólico do solo (qCO2). Embrapa Agrobiologia, Seropédica

    Google Scholar 

  • Stanley MC, Ward DF (2012) Impacts of Argentine ants on invertebrate communities with below-ground consequences. Biodivers Conserv 21:2653–2669. doi:10.1007/s10531-012-0324-0

    Article  Google Scholar 

  • Steenbock W, Silva RO, Froufe LCM, Seoane CE (2013) Agroflorestas e sistemas agroflorestais no espaço e no tempo. In: Steenbock W, Silva LC, Silva RO et al (eds) Agrofloresta, ecologia e sociedade. Kairós, Curitiba, pp 39–60

    Google Scholar 

  • Tian Y, Cao F, Wang G (2013) Soil microbiological properties and enzyme activity in Ginkgo-tea agroforestry compared with monoculture. Agrofor Syst 87:1201–1210. doi:10.1007/s10457-013-9630-0

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial-C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Wang Q, Wang S (2011) Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Appl Soil Ecol 47:210–216. doi:10.1016/j.apsoil.2010.12.004

    Article  Google Scholar 

  • Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol Biochem 41:910–918. doi:10.1016/j.soilbio.2008.12.028

    Article  CAS  Google Scholar 

  • Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF, Moço MKS, Fontes AG, Machado RCR, Baligar VC (2012) Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 86:197–212. doi:10.1007/s10457-012-9550-4

    Article  Google Scholar 

Download references

Acknowledgments

To the Projeto Agroflorestar, sponsored by Programa Petrobrás Ambiental. To the Projeto Agroflorestas of the Embrapa. To the farmers Nardo, Dolíria, Sezefredo and Sidnei for the warm welcome on working days. To the Rafael Tiberio for the great support in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiane Machado Vezzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cezar, R.M., Vezzani, F.M., Schwiderke, D.K. et al. Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agroforest Syst 89, 1035–1047 (2015). https://doi.org/10.1007/s10457-015-9833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9833-7

Keywords

Navigation