Skip to main content

Advertisement

Log in

Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Aiming to support the use of native species from the Atlantic Rainforest in local agroforestry systems, we analysed chemical and biochemical components related to leaf decomposition of Inga subnuda, Senna macranthera, Erythrina verna, Luehea grandiflora, Zeyheria tuberculosa, Aegiphila sellowiana, and Persea americana. These tree species are native (except for P. americana) and commonly used in agroforestry systems in the Atlantic Rainforest. For the three first species (Fabaceae), we also analysed the remaining dry matter and released nutrients from leaves, using litter bags, and biological nitrogen fixation, using Bidens pilosa and Brachiaria plantaginea as references of non-N2-fixing plants. Leaves from I. subnuda, L. grandiflora, and P. americana had a lower decomposition rate than the other species, exhibiting negative correlations with lignin/N and (lignin+polyphenol)/N ratios. The percentages of remaining dry matter after 1 year were 69 % (I. subnuda), 26 % (S. macranthera) and 16 % (E. verna). Higher nutrient release was found in decreasing order from residues of E. verna, S. macranthera, and I. subnuda. The percentages of nitrogen fixation were 22.6 % (E. verna), 20.6 % (I. subnuda) and 16.6 % (S. macranthera). Diversification of tree species in agroforestry systems allows for input of diversified organic material and can contribute to maintaining and improving soil functions resulting in improvements of soil quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JD, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. Wallingford, UK 221p

    Google Scholar 

  • Barberi A, Carneiro MAC, Moreira FMS, Siqueira JO (1998) Nodulação em leguminosas florestais em viveiros no Sul de Minas Gerais. Cerne 4:145–153

    Google Scholar 

  • Beddy TL, Snapp SS, Akinnifesia FK, Sileshi GW (2010) Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric Ecosyst Environ 138:139–146

    Article  Google Scholar 

  • Braga JM, Defelipo BV (1974) Determinação espectrofotométrica de fósforo em extratos de solos e plantas. Rev Ceres 1:73–85

    Google Scholar 

  • Bruneau A, Mercure M, Lewis GP, Herendeen PS (2008) Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany 86:697–718

    Article  CAS  Google Scholar 

  • Bryan JA, Berlyn GP, Gordon JC (1996) Toward a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae. Plant Soil 186:151–159

    Article  CAS  Google Scholar 

  • Cardoso IM, Guijt I, Franco FS, Carvalho AF, Ferreira-Neto PS (2001) Continual learning for agroforestry system design: University, NGO and farmer partnership in Minas Gerais. Agric Syst 69:235–257

    Article  Google Scholar 

  • Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Curl EA, Rodriguez-Kabana R (1972) Microbial interactions. In: Wilkinson RE (ed) Research methods in weed science. Atlanta, Southern Weed Society, pp 162–194

    Google Scholar 

  • De Faria SM, Franco AA, Jesus RM, Menandro MS, Baitelli JB, Mucci ESF, Dobereiner J, Sprent JI (1984) New nodulating legume trees from South-East Brazil. New Phytol 98:317–328

    Article  Google Scholar 

  • De Faria SM, Diedhiou AG, de Lima HC, Ribeiro RD, Galiana A, Castilho AF, Henriques JC (2010) Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. J Exp Bot 61:3119–3127

    Article  PubMed  Google Scholar 

  • Duarte EMG (2007) Ciclagem de nutrientes por árvores em sistemas agroflorestais na Mata Atlântica. MSc Thesis, Federal University of Viçosa, Viçosa

  • Embrapa (1999) Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa Solos/Embrapa Informática Agropecuária/Embrapa. p 370

  • Gehring C, Vlek PLG (2004) Limitations of the N-15 natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CAB International, Wallingford

    Book  Google Scholar 

  • Goering HK, van Soest PJ (1970) Forage fiber analyses (Apparatus, reagents, procedures, and some applications). United States Department of Agriculture (Agriculture handbook No. 379), Washington, p 20

  • Golfari L (1975) Zoneamento Ecológico do Estado de Minas Gerais para reflorestamento. Série Técnica, 3. CPFRC. Belo Horizonte, Brasil

  • Grant CA, Peterson GA, Campbell CA (2002) Nutrient considerations for diversified cropping systems in the Northern Great Plains. Agron J 94:186–198

    Article  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    Article  CAS  Google Scholar 

  • Högberg P (1997) 15N natural abundance in plant-soil systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Jaramillo-Botero C, Santos RHS, Fardim MP, Pontes TM, Sarmiento F (2008) Produção de serapilheira e aporte de nutrientes de espécies arbóreas nativas em um sistema agroflorestal na Zona da Mata de Minas Gerais. Árvore 32:869–877

    Article  Google Scholar 

  • Kanmegne J, Dugma B, Henrot J, Isirimah NO (1999) Soil fertility enhancement by planted tree-fallow species in the humid lowlands of Cameroon. Agrofor Syst 46:239–249

    Article  Google Scholar 

  • Leakey RRB, Tchoundjeu Z, Schreckenberg K, Shackleton SE, Shackleton CM (2005) Agroforestry tree products (AFTPs): targeting poverty reduction and enhanced livelihoods. Int J Agric Sustain 3:1–23

    Article  Google Scholar 

  • Leblanc HA, Nygren P, McGraw RL (2006) Green mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practice in the humid tropics. Soil Biol Biochem 38:349–358

    Article  CAS  Google Scholar 

  • Ledgard SF, Freney JR, Simpson JR (1984) Variations in natural enrichment of 15N in the profiles of some Australian pasture soils. Aust J Exp Agric 22:155–164

    CAS  Google Scholar 

  • Livesley SJ, Gregory PJ, Buresh RJ (2002) Competition in tree row agroforestry systems. 2. Distribution, dynamics and uptake of soil inorganic N. Plant Soil 247:177–187

    Article  CAS  Google Scholar 

  • Marazzi B, Endress PK, De Queiroz LP, Conti E (2006) Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. Am J Bot 93:288–303

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (2008) Mineral nutrition of higher plants, 2nd edn. Academic Press, London p 889

    Google Scholar 

  • Matos ES, Mendonça ES, Lima PC, Coelho MS, Mateus RF, Cardoso IM (2008) Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Rev Bras Ci Solo 32:2027–2035

    Article  Google Scholar 

  • Mendonça ES, Stott DE (2003) Characteristics and decomposition rates of pruning residues from a shaded coffee system in Southeastern Brazil. Agrofor Syst 57:117–125

    Article  Google Scholar 

  • Moonen AC, Bárberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21

    Article  Google Scholar 

  • Morais RF, Xavier RP, Alves BJR, Boddey R, Urquiaga S (2006) Uso da abundância natural de 15N (δ15N) no perfil do solo como suporte para a estimativa da FBN. In: FERTBIO: Em busca das Raízes, 2006, Bonito-MS. Anais. Bonito-MS: Sociedade Brasileira de Ciência do Solo. 4p (CD-ROM)

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Naisbitt T, James EK, Sprent JI (1992) The evolutionary significance of the legume genus Chamaecrista, as determined by nodule structure. New Phytol 122:487–492

    Article  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163

    Article  Google Scholar 

  • Palm CA (1995) Contribution of agroforestry trees to nutrient requirements of intercropped plants. Agrofor Syst 30:105–124

    Article  Google Scholar 

  • Palm CA, Sanches PA (1990) Decomposition and nutrient release patterns of the leaves of tree tropical legumes. Biotropica 22:330–332

    Article  Google Scholar 

  • Palm CA, Sanchez PA (1991) Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biol Biochem 23:83–88

    Article  CAS  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42

    Article  Google Scholar 

  • Partey ST, Quashie-Sam SJ, Thevathasan NV, Gordon AM (2009) Decomposition and nutrient release patterns of the leaf biomass of the wild sunflower (Tithonia diversifolia): a comparative study with four leguminous agroforestry species. Agrofor Syst 81:123–134

    Article  Google Scholar 

  • Peoples MB, Faizah AW, Rekasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Center for International Agricultural Research, Bruce

    Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann NY Acad Sci 1134:173–200

    Article  PubMed  Google Scholar 

  • Pleguezuelo CRR, Zuazo VHD, Fernández JLM, Peinado FJM, Tarifa DF (2009) Litter decomposition and nitrogen release in a sloping Mediterranean subtropical agroecosystem on the coast of Granada (SE, Spain): effects of floristic and topographic alteration on the slope. Agric Ecosyst Environ 134:79–88

    Article  Google Scholar 

  • Pribyl DW (2010) A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:75–83

    Article  CAS  Google Scholar 

  • Roggy JC, Prévost MF (1999) Nitrogen-fixing legumes and silvigenesis in a rain forest in French Guiana: a taxonomic and ecological approach. New Phytol 144:283–294

    Article  Google Scholar 

  • Sá NMH, Vargas MAT (1997) Fixação biológica de nitrogênio por leguminosas forrageiras. In: Vargas MAT, Hungria M (eds) Biologia dos Solos dos Cerrados. EMBRAPA-CPAC, Planaltina, pp 127–152

    Google Scholar 

  • Schwendener CM, Lehmann J, Rondon M, Wandelli E, Fernandes E (2007) Soil mineral N dynamics beneath mixtures of leaves from legume and fruit trees in Central Amazonian multi-strata agroforests. Acta Amazonica 37:313–320

    Article  CAS  Google Scholar 

  • Shearer GB, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, Rundel PW (1983) Estimates of N2 fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems. Oecologia 56:365–373

    Article  Google Scholar 

  • Silva GTA, Matos LV, Nóbrega PO, Campello EFC, Resende ASR (2008) Chemical composition and decomposition rate of plants used as green manure. Sci Agric 65:298–305

    Google Scholar 

  • Souza HN, Cardoso IM, Fernandes JM, Garcia FCP, Garcia VR, Santos AC, Carvalho AF, Mendonça ES (2010) Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agrofor Syst 80:1–16

    Article  Google Scholar 

  • Souza HN, Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, Fernandes RBA, Gomes LC, Pulleman MM (2012) Protective shade, tree diversity and soil properties in coffee agroforestry system in the Atlantic Rainforest biome. Agric Ecosyst Environ 146:179–196

    Article  Google Scholar 

  • Statsoft INC. (1997) Statistica for Windows.5.1. Computer program manual. Tulsa, USA

  • Stevenson FJ, Cole MA (1999) Cycles of Soil, 2nd edn. Wiley, Hoboken p 427

    Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. Departamento de Solos, UFRGS, Porto Alegre p 174

    Google Scholar 

  • Teixeira FCP, Reinert F, Rumjanek NG, Boddey RM (2006) Quantification of the contribution of biological nitrogen fixation to Cratylia mollis using the 15N natural abundance technique in the semi-arid Caatinga region of Brazil. Soil Biol Biochem 38:1989–1993

    Article  CAS  Google Scholar 

  • Tian G, Kang BT, Brussaard L (1992) Biological effects of plant residues with contrasting chemical under humid tropical conditions decompositions and nutrients release. Soil Biol Biochem 24:1051–1060

    Article  CAS  Google Scholar 

  • van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Vitti GC, Lima E, Cicarone F (2006) Cálcio, Magnésio e Enxofre. In: Fernandes MS (ed) Nutrição Mineral de Plantas. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 299–325

    Google Scholar 

Download references

Acknowledgments

The authors thank the Center of Alternative Technologies (CTA), the farmers and their organizations for the work in partnership, the Brazilian sponsors FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support and scholarships for E.M.G. Duarte, M.A.F·C. Mendonça, M.S. Coelho and E.M.A. Villani, and Arne Janssen for useful comments and corrections on an earlier version of this paper. Constructive comments by two anonymous referees on an earlier version are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, E.M.G., Cardoso, I.M., Stijnen, T. et al. Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems. Agroforest Syst 87, 835–847 (2013). https://doi.org/10.1007/s10457-013-9600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-013-9600-6

Keywords

Navigation