Skip to main content

Advertisement

Log in

Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cerrado is a savanna-like region that covers a large area of Brazil. Despite its biological importance, the Cerrado has been the focus of few microbial diversity studies. A molecular approach was chosen to characterize the soil fungal communities in four areas of the Cerrado biome: a native Cerrado, a riverbank forest, an area converted to a soybean plantation, and an area converted to pasture. Global diversity of fungal communities in each area was assessed through Ribosomal intergenic spacer analysis which revealed remarkable differences among the areas studied. Sequencing of approximately 200 clones containing 18S rDNA sequences from each library was performed and, according to the genetic distance between sequences, these were assigned to operational taxonomic units (OTUs). A total of 75, 85, 85, and 70 OTUs were identified for the native Cerrado, riverbank forest, pasture, and soybean plantation, respectively. Analysis of sequences using a similarity cutoff value of 1% showed that the number of OTUs for the native Cerrado area was reduced by 35%; for the soybean plantation, a reduction by more than 50% was observed, indicating a reduction in fungal biodiversity associated with anthropogenic activity. This is the first study demonstrating the anthropogenic impact on Cerrado soil fungal diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  PubMed  CAS  Google Scholar 

  • Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    Article  PubMed  CAS  Google Scholar 

  • Arnold AE et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  PubMed  CAS  Google Scholar 

  • Crecchio C, Gelsomino Ambrosoli R, Minati JL, Ruggiero P (2004) Functional and molecular response of soil microbial communities under differing soil management practices. Soil Biology & Biochemistry. 36:1873–1883

    Article  CAS  Google Scholar 

  • Dashwood EP, Fox RA, Duncan JM (1993) Effect of substrate and plant maturity on the incidence of infection of potato roots by pathogenic and nonpathogenic fungi. Mycol Res 97:733–745

    Article  Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Engelen B, Meinken K, von Wintzingerode F, Heuer H, Malkomes HP, Backhaus H (1998) Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl Environ Microbiol 64:2814–2821

    PubMed  CAS  Google Scholar 

  • Franklin E, Santos EM, Albuquerque MI (2006) Diversity and distribution of oribatid mites (Acari:Oribatida) in a lowland rain forest in Peru and in several environments of the Brazilians states of Amazonas, Rondonia, Roraima and Para. Braz J Biol 66:999–1020

    Article  PubMed  CAS  Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AM, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16

    Article  Google Scholar 

  • Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM (2004) Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl Environ Microbiol 70:2692–2701

    Article  PubMed  CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimensioned biodiversity: magnitude, significance and conservation. Micol Res 95:641–655

    Google Scholar 

  • Hawksworth DL, Rossman YA (1997) Where are all the undescribed fungi? Phytopathology 87:888–891

    Article  CAS  PubMed  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  • Hunt J, Boddy L, Randerson PF, Rogers HJ (2004) An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils. Microb Ecol 47:385–395

    Article  PubMed  CAS  Google Scholar 

  • Jizheng H, Zhihong X, Jane H (2005) Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiol Lett 247:91–100

    Article  CAS  Google Scholar 

  • Josen K, Jacobsen CS, Torsvik V (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fertil Soils 33:443–453

    Article  CAS  Google Scholar 

  • Jumppoonem A, Trappe JM (1998) Dark-septate root endophytes: a review with special reference to facultative biotrophic symbiosis. New Phytol 140:295–310

    Article  Google Scholar 

  • Kirk JL et al (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  • Marris E (2005) The forgotten ecosystem. Nature 437:944–945

    Article  PubMed  CAS  Google Scholar 

  • Massicotte HB, Melville LH, Tackaberry LE, Peterson RL (2007) Pityopus californicus: strutural characteristics of seed and seedling development in a myco-heterotrophic species. Mycorrhiza 17:647–653

    Article  PubMed  Google Scholar 

  • O’Donnell AG, Goodfellow M, Hawksworth DL (1994) Theoretical practical aspects of the quantification of biodiversity among microorganism. Philos Trans R Soc London B Biol Sci 345:65–73

    Article  PubMed  CAS  Google Scholar 

  • Ohtonen R, Aikio S, Väre H (1997) Ecological Theories in Soil Biology. Soil Biol Biochem 29:1613–1619

    Article  CAS  Google Scholar 

  • Pappas GJ Jr, Benabdellah K, Zingales B, Gonzalez A (2005) Expressed sequence tags from the plant trypanosomatid Phytomonas serpens. Mol Biochem Parasitol 142:149–157

    Article  PubMed  CAS  Google Scholar 

  • Powell JR et al (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73:4365–4367

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF et al (2007) Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiol Res (in press)

  • Ratter JA, Ribeiro JF, BridGeWater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Reiners WA, Bouwman AF, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4:363–377

    Article  Google Scholar 

  • Saldarriaga Y, Pineda F, Garcia G, Velasquez LF (1994) New species of Psilocybe from Colombia and discussion of the known species. Mycotaxon 51:225–235

    Google Scholar 

  • Schiller CT, Sinclair JB (1984) Microorganisms associated with soybean vascular exudate and plant parts. Int J Tropical Plant Dis 2:1–4

    Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbach K, Enkerli J, Widmer F (2007) Objective criteria to assess representativity of soil fungal community profiles. J Microbiol Methods 68:358–366

    Article  PubMed  CAS  Google Scholar 

  • Sequerra J, Marmeisse R, Valla G, Normand P, Capellano A, Moiroud A (1997) Taxonomic position and intraspecific variability of the nodule forming Penicillium nodositatum inferred from RFLP analysis of the ribosomal intergenic spacer and random amplified polymorphic DNA. Mycol Res 101:465–472

    Article  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  • Sutton JC, Li DW, Peng G, Yu H, Zhang P, Valdebenito-Sanhueza RM (1997) Gliocladium roseum–a versatile adversary of Botrytis cinerea in Crops. Plant Dis 81:316–328

    Article  Google Scholar 

  • Swart L, Crous PW, Kang jC, Machau GRA, Pascoe I, Palm ME (2001) Differentiation of species of Elsinoe associated with scab disease of Proteaceae based on morphology, symptomology, and ITS sequence phylogeny. Mycologia 93:366–379

    Article  Google Scholar 

  • Theron DJ, Holtz G (1991) Dry rot of potatoes cause by Glicocladium roseum. Plant Pathol 40:302–305

    Article  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000

    Article  PubMed  CAS  Google Scholar 

  • Udagawa S, Uchiyama S (2001) Taxonomic studies on new or critical fungi of non-pathogenic Onygenales 4. Mycoscience 42:281–287

    Article  Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JP (2002) Extensive fungal diversity in plant roots. Science 295:2051

    Article  PubMed  Google Scholar 

  • Wertz S et al (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169

    Article  PubMed  CAS  Google Scholar 

  • Wertz S et al (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219

    Article  PubMed  Google Scholar 

  • Wolfe BE, Mummey DL, Rillig MC, Klironomos JN (2007) Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza 17:175–183

    Article  PubMed  Google Scholar 

  • Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA (1998) Methods for microbial DNA extraction from soil for PCR amplification. Biol Proced Online 1:40–47

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq, FAP/DF, UCB and Ouro Fino Veterinária grants. B.F.Q. is supported by CNPq grant number 472813/2006-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Henrique Krüger.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Castro, A.P., Quirino, B.F., Pappas, G. et al. Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Arch Microbiol 190, 129–139 (2008). https://doi.org/10.1007/s00203-008-0374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0374-6

Keywords

Navigation