Skip to main content
Log in

Interleukin-22 promotes tumor angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

TH17 cells play important yet complex roles in cancer development and progression. We previously reported that TH17 cells and IL-17 mediate resistance to anti-VEGF therapy by inducing recruitment of immunosuppressive and proangiogenic myeloid cells to the tumor microenvironment. Here, we demonstrate that IL-22, a key effector cytokine expressed by TH17 cells, directly acts on endothelial cells to promote tumor angiogenesis. IL-22 induces endothelial cell proliferation, survival, and chemotaxis in vitro and neovascularization in an ex vivo mouse choroid explant model. Blockade of IL-22, with a neutralizing antibody, significantly inhibits tumor growth associated with reduced microvascular density. No synergistic effect of IL-22 with VEGF was observed. These results identify IL-22 as a potential therapeutic target for blocking tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrara N, Adamis AP (2016) Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 15(6):385–403

    Article  CAS  PubMed  Google Scholar 

  2. Brauer MJ, Zhuang G, Schmidt M, Yao J, Wu X, Kaminker JS, Jurinka SS, Kolumam G, Chung AS, Jubb A, Modrusan Z, Ozawa T, James CD, Phillips H, Haley B, Tam RN, Clermont AC, Cheng JH, Yang SX, Swain SM, Chen D, Scherer SJ, Koeppen H, Yeh RF, Yue P, Stephan JP, Hegde P, Ferrara N, Singh M, Bais C (2013) Identification and analysis of in vivo VEGF downstream markers link VEGF pathway activity with efficacy of anti-VEGF therapies. Clin Cancer Res 19(13):3681–3692

    Article  CAS  PubMed  Google Scholar 

  3. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. https://doi.org/10.1155/2014/149185

    Article  PubMed  PubMed Central  Google Scholar 

  4. Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20(6):607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC, Joyce JA (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018. https://doi.org/10.1126/science.aad3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Negri L, Ferrara N (2018) The prokineticins: neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesis. Physiol Rev 98(2):1055–1082

    Article  CAS  PubMed  Google Scholar 

  7. Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5(1):e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34

    Article  CAS  PubMed  Google Scholar 

  9. Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591

    Article  CAS  PubMed  Google Scholar 

  11. Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, Vernes JM, Jiang Z, Meng YG, Peale FV, Ouyang W, Ferrara N (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19:1114–1123

    Article  CAS  PubMed  Google Scholar 

  12. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJ, Ciampricotti M, Hawinkels LJ, Jonkers J, de Visser KE (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556):345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saharinen P, Eklund L, Alitalo K (2017) Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 16(9):635–661

    Article  CAS  PubMed  Google Scholar 

  14. Liang W, Ferrara N (2016) The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res 4(2):83–91. https://doi.org/10.1158/2326-6066

    Article  CAS  PubMed  Google Scholar 

  15. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  16. Basu R, Hatton RD, Weaver CT (2013) The Th17 family: flexibility follows function. Immunol Rev 252(1):89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184(3):1630–1641

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, Ouyang W (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445(7128):648–651

    Article  CAS  PubMed  Google Scholar 

  19. Rutz S, Eidenschenk C, Ouyang W (2013) IL-22, not simply a Th17 cytokine. Immunol Rev 252(1):116–132

    Article  CAS  PubMed  Google Scholar 

  20. Wu T, Cui L, Liang Z, Liu C, Liu Y, Li J (2013) Elevated serum IL-22 levels correlate with chemoresistant condition of colorectal cancer. Clin Immunol 147(1):38–39

    Article  CAS  PubMed  Google Scholar 

  21. Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O, Powrie F (2013) Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 210(5):917–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13(1):21–38

    Article  CAS  PubMed  Google Scholar 

  23. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Bock BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquiere B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde VM, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. https://doi.org/10.1007/s10456-018-9613-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xin H, Zhong C, Nudleman E, Ferrara N (2016) Evidence for pro-angiogenic functions of VEGF-Ax. Cell 167(1):275–284 e276

    Article  CAS  PubMed  Google Scholar 

  25. Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP, Juan AM, Tahiri H, Duhamel F, Chen J, Sapieha P, Chemtob S, Joyal JS, Smith LE (2013) Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS ONE 8(7):e69552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1 + myeloid cells. Nat Biotechnol 25(8):911–920

    Article  CAS  PubMed  Google Scholar 

  27. Tan AH, Lam KP (2010) Pharmacologic inhibition of MEK-ERK signaling enhances Th17 differentiation. J Immunol 184(4):1849–1857

    Article  CAS  PubMed  Google Scholar 

  28. Dumoutier L, Van Roost E, Colau D, Renauld JC (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97(18):10144–10149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He X, Li H, Chen Y, Chen A, Shan K, Chen J, Zhao H, Zhang X, Cai T (2016) The Effects of IL-22 on the Inflammatory Mediator Production, Proliferation, and Barrier Function of HUVECs. Inflammation 39(3):1099–1107

    CAS  PubMed  Google Scholar 

  30. Wu Z, Hu Z, Cai X, Ren W, Dai F, Liu H, Chang J, Li B (2017) Interleukin 22 attenuated angiotensin II induced acute lung injury through inhibiting the apoptosis of pulmonary microvascular endothelial cells. Sci Rep 7(1):2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shang WQ, Yu JJ, Zhu L, Zhou WJ, Chang KK, Wang Q, Li MQ (2015) Blocking IL-22, a potential treatment strategy for adenomyosis by inhibiting crosstalk between vascular endothelial and endometrial stromal cells. Am J Transl Res 7(10):1782–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC (2002) Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem 277(37):33676–33682

    Article  CAS  PubMed  Google Scholar 

  33. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21(2):241–254

    Article  CAS  PubMed  Google Scholar 

  34. Kohler T, Reizis B, Johnson RS, Weighardt H, Forster I (2012) Influence of hypoxia-inducible factor 1alpha on dendritic cell differentiation and migration. Eur J Immunol 42(5):1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brembilla NC, Dufour AM, Alvarez M, Hugues S, Montanari E, Truchetet ME, Lonati P, Fontao L, Gabrielli A, Vettori S, Valentini G, Boehncke WH, Meroni P, Chizzolini C (2016) IL-22 capacitates dermal fibroblast responses to TNF in scleroderma. Ann Rheum Dis 75(9):1697–1705

    Article  CAS  PubMed  Google Scholar 

  36. Bendell JC, Hochster H, Hart LL, Firdaus I, Mace JR, McFarlane JJ, Kozloff M, Catenacci D, Hsu JJ, Hack SP, Shames DS, Phan SC, Koeppen H, Cohn AL (2017) A phase II randomized trial (GO27827) of first-line FOLFOX plus bevacizumab with or without the met inhibitor onartuzumab in patients with metastatic colorectal cancer. Oncologist 22(3):264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spigel DR, Edelman MJ, O’Byrne K, Paz-Ares L, Mocci S, Phan S, Shames DS, Smith D, Yu W, Paton VE, Mok T (2016) Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non-small-cell lung cancer: METLung. J Clin Oncol 31(32):4105–4114

    Article  CAS  Google Scholar 

  38. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286

    Article  CAS  PubMed  Google Scholar 

  39. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94(12):883–893

    Article  PubMed  Google Scholar 

  40. Teicher BA, Dupuis N, Kusomoto T (1994) Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Radiat Oncol Investig 2(6):269–276

    Article  CAS  Google Scholar 

  41. Teicher BA, Holden SA, Ara G, Dupuis NP, Liu F, Yuan J, Ikebe M, Kakeji Y (1995) Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer 61(5):732–737

    Article  CAS  PubMed  Google Scholar 

  42. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989

    Article  CAS  PubMed  Google Scholar 

  43. Jacobs VL, Valdes PA, Hickey WF, De Leo JA (2011) Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro 3(3):e00063. https://doi.org/10.1042/AN20110014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Genentech. Inc. for generously providing us with the anti-VEGF and anti-IL-22 antibodies for neutralization experiments. We thank Dr. Wenjun Ouyang (Amgen, Inc.) for helpful discussion and advice. We also thank Dr. Karen Messer and Yuqi Qin from the department of Biostatistics and Bioinformatics at Moores UCSD Cancer Center for help and advice with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2018_9658_MOESM1_ESM.pptx

Supplementary Fig. 1 Expression of IL-22 by EL4 cells. EL4 cells were treated with 1 ng/mL of TGFβ and 20 ng/mL IL-6 under normoxia and hypoxia (1% O2). IL-22 protein levels in the EL4 cell conditioned medium were determined by ELISA. Error bars indicate standard deviation, n = 3–7 replicates from 3 independent experiments. n.s. not significant, *p < 0.05. Supplementary material 1 (PPTX 587 KB)

10456_2018_9658_MOESM2_ESM.pptx

Supplementary Fig. 2 Anti-IL-22 does not Inhibit EL4 (a) or GL261 (b) cell growth in vitro. Cell viability was assessed by the Alamar blue assay and fluorescence readings at 590 nm (excited at 530 nm) were used as readouts. Error bars indicate standard deviation. Data from three experiments were pooled for a total number of 5–8 replicates per experimental condition. n.s. not significant. Supplementary material 2 (PPTX 1274 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protopsaltis, N.J., Liang, W., Nudleman, E. et al. Interleukin-22 promotes tumor angiogenesis. Angiogenesis 22, 311–323 (2019). https://doi.org/10.1007/s10456-018-9658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9658-x

Keywords

Navigation