Skip to main content

Angiogenesis and Immune Suppression in Cancer

  • Chapter
  • First Online:
Tumor-Induced Immune Suppression

Abstract

Angiogenesis and immune suppression share common cellular and molecular mediators, and these processes are linked in diverse biological processes such as wound healing, pregnancy, and cancer. This shared program exists under physiological conditions and is co-opted under pathological conditions. Here, we focus on these connections in the context of tumor biology, emphasizing the role of vascular endothelial growth factor (VEGF) and that of the angiogenic tumor endothelium as an immune regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szekanecz Z, Koch AE (2007) Mechanisms of Disease: angiogenesis in inflammatory diseases. Nat Clin Pract Rheumatol 3(11):635–643. doi:ncprheum0647 [pii]10.1038/ncprheum0647

    CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:S0092-8674(11)00127-9 [pii]10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  3. Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8(1):74–80. doi:nri2233 [pii]10.1038/nri2233

    CAS  PubMed  Google Scholar 

  4. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727. doi:nri1936 [pii]10.1038/nri1936

    CAS  PubMed  Google Scholar 

  5. Wu L, Yan C, Czader M, Foreman O, Blum JS, Kapur R, Du H (2012) Inhibition of PPARgamma in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119(1):115–126. doi:blood-2011-06-363093 [pii]10.1182/blood-2011-06-363093

    CAS  PubMed  Google Scholar 

  6. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634. doi:onc2009441 [pii]10.1038/onc.2009.441

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47. doi:10.1038/nrc704

    CAS  PubMed  Google Scholar 

  8. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8(6):425–437. doi:nrc2397 [pii]10.1038/nrc2397

    CAS  PubMed  Google Scholar 

  9. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975. doi:nrc2540 [pii]10.1038/nrc2540

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J (2008) Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 38(9):2412–2418. doi:10.1002/eji.200838318

    CAS  PubMed  Google Scholar 

  11. Noman MZ, Buart S, Van Pelt J, Richon C, Hasmim M, Leleu N, Suchorska WM, Jalil A, Lecluse Y, El Hage F, Giuliani M, Pichon C, Azzarone B, Mazure N, Romero P, Mami-Chouaib F, Chouaib S (2009) The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 182(6):3510–3521. doi:182/6/3510 [pii]10.4049/jimmunol.0800854

    CAS  PubMed  Google Scholar 

  12. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:nri2506 [pii]10.1038/nri2506

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777–2790. doi:10.1172/JCI28828

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131. doi:66/2/1123 [pii]10.1158/0008-5472.CAN-05-1299

    CAS  PubMed  Google Scholar 

  15. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. doi:S1535610804002703 [pii]10.1016/j.ccr.2004.08.031

    CAS  PubMed  Google Scholar 

  16. Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J, Blanchard D, Bais C, Peale FV, van Bruggen N, Ho C, Ross J, Tan M, Carano RA, Meng YG, Ferrara N (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831. doi:nature06348 [pii]10.1038/nature06348

    CAS  PubMed  Google Scholar 

  17. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631. doi:nrc2444 [pii]10.1038/nrc2444

    CAS  PubMed  Google Scholar 

  18. Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L, Wagner DS, Katsaros D, Caroll R, Coukos G (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med 10(9):950–958. doi:10.1038/nm1097nm1097 [pii]

    CAS  PubMed  Google Scholar 

  19. Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164(2):762–767. doi:ji_v164n2p762 [pii]

    CAS  PubMed  Google Scholar 

  20. Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L, Lewis CE (2003) Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163(4):1233–1243. doi:S0002-9440(10)63483-9 [pii]10.1016/S0002-9440(10)63483-9

    CAS  PubMed  Google Scholar 

  21. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80(6):1183–1196. doi:jlb.0905495 [pii]10.1189/jlb.0905495

    CAS  PubMed  Google Scholar 

  22. Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M (1995) Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res 55(18):4140–4145

    CAS  PubMed  Google Scholar 

  23. Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A, Miller JM, Shou M, Epstein SE, Fuchs S (2003) Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108(2):205–210. doi:10.1161/01.CIR.0000079225.50817.7101.CIR.0000079225.50817.71 [pii]

    PubMed  Google Scholar 

  24. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307. doi:nri1806 [pii]10.1038/nri1806

    CAS  PubMed  Google Scholar 

  25. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380. doi:24/34/5373 [pii]10.1200/JCO.2006.05.9584

    PubMed  Google Scholar 

  26. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98(5):1089–1099. doi:10.1002/cncr.11618

    PubMed  Google Scholar 

  27. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. doi:10.1038/nm1093nm1093 [pii]

    CAS  PubMed  Google Scholar 

  28. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102(51):18538–18543. doi:0509182102 [pii]10.1073/pnas.0509182102

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Giatromanolaki A, Bates GJ, Koukourakis MI, Sivridis E, Gatter KC, Harris AL, Banham AH (2008) The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol Oncol 110(2):216–221. doi:S0090-8258(08)00279-5 [pii]10.1016/j.ygyno.2008.04.021

    CAS  PubMed  Google Scholar 

  30. Gupta S, Joshi K, Wig JD, Arora SK (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncol 46(6):792–797. doi:780589226 [pii]10.1080/02841860701233443

    CAS  PubMed  Google Scholar 

  31. Casares N, Arribillaga L, Sarobe P, Dotor J, de Lopez-Diaz CA, Melero I, Prieto J, Borras-Cuesta F, Lasarte JJ (2003) CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol 171(11):5931–5939

    CAS  PubMed  Google Scholar 

  32. Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, Forster I, Huss R, Weber WA, Kneilling M, Rocken M (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13(6):507–518. doi:S1535-6108(08)00121-9 [pii]10.1016/j.ccr.2008.04.001

    PubMed  Google Scholar 

  33. Qin Z, Blankenstein T (2000) CD4+ T cell–mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 12(6):677–686. doi:S1074-7613(00)80218-6 [pii]

    CAS  PubMed  Google Scholar 

  34. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230. doi:nature10169 [pii]10.1038/nature10169

    CAS  PubMed  Google Scholar 

  35. Schultz ES, Schuler-Thurner B, Stroobant V, Jenne L, Berger TG, Thielemanns K, van der Bruggen P, Schuler G (2004) Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy. J Immunol 172(2):1304–1310

    CAS  PubMed  Google Scholar 

  36. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tuttenberg A, Becker JC, Keikavoussi P, Kampgen E, Schuler G (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17(4):563–570. doi:mdj138 [pii]10.1093/annonc/mdj138

    CAS  PubMed  Google Scholar 

  37. Egeter O, Mocikat R, Ghoreschi K, Dieckmann A, Rocken M (2000) Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from nontransgenic mice. Cancer Res 60(6):1515–1520

    CAS  PubMed  Google Scholar 

  38. Ziegler A, Heidenreich R, Braumuller H, Wolburg H, Weidemann S, Mocikat R, Rocken M (2009) EpCAM, a human tumor-associated antigen promotes Th2 development and tumor immune evasion. Blood 113(15):3494–3502. doi:blood-2008-08-175109 [pii]10.1182/blood-2008-08-175109

    CAS  PubMed  Google Scholar 

  39. Lee CG, Ma B, Takyar S, Ahangari F, Delacruz C, He CH, Elias JA (2011) Studies of vascular endothelial growth factor in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 8(6):512–515. doi:8/6/512 [pii]10.1513/pats.201102-018MW

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Asosingh K, Swaidani S, Aronica M, Erzurum SC (2007) Th1- and Th2-dependent endothelial progenitor cell recruitment and angiogenic switch in asthma. J Immunol 178(10):6482–6494. doi:178/10/6482 [pii]

    CAS  PubMed  Google Scholar 

  41. Corrigan CJ, Wang W, Meng Q, Fang C, Wu H, Reay V, Lv Z, Fan Y, An Y, Wang YH, Liu YJ, Lee TH, Ying S (2011) T-helper cell type 2 (Th2) memory T cell-potentiating cytokine IL-25 has the potential to promote angiogenesis in asthma. Proc Natl Acad Sci U S A 108(4):1579–1584. doi:1014241108 [pii]10.1073/pnas.1014241108

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Larsen H, Muz B, Khong TL, Feldmann M, Paleolog EM (2012) Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA. Arthritis Res Ther 14(4):R180. doi:ar3934 [pii]10.1186/ar3934

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B (2011) IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 407(2):348–354. doi:S0006-291X(11)00393-7 [pii]10.1016/j.bbrc.2011.03.021

    CAS  PubMed  Google Scholar 

  44. Iida T, Iwahashi M, Katsuda M, Ishida K, Nakamori M, Nakamura M, Naka T, Ojima T, Ueda K, Hayata K, Nakamura Y, Yamaue H (2011) Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol Rep 25(5):1271–1277. doi:10.3892/or.2011.1201

    CAS  PubMed  Google Scholar 

  45. Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze MT (2003) Interleukin-17 promotes angiogenesis and tumor growth. Blood 101(7):2620–2627. doi:10.1182/blood-2002-05-14612002-05-1461 [pii]

    CAS  PubMed  Google Scholar 

  46. Du JW, Xu KY, Fang LY, Qi XL (2012) Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Report 6(5):1099–1102. doi:10.3892/mmr.2012.1036

    CAS  Google Scholar 

  47. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK, Sasaki H (2005) IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 175(9):6177–6189. doi:175/9/6177 [pii]

    CAS  PubMed  Google Scholar 

  48. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 206(7):1457–1464. doi:jem.20090207 [pii]10.1084/jem.20090207

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6):1141–1149. doi:blood-2009-03-208249 [pii]10.1182/blood-2009-03-208249

    CAS  PubMed  Google Scholar 

  50. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW, Dong C (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31(5):787–798. doi:S1074-7613(09)00451-8 [pii]10.1016/j.immuni.2009.09.014

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Bourbie-Vaudaine S, Blanchard N, Hivroz C, Romeo PH (2006) Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. J Immunol 177(3):1460–1469. doi:177/3/1460 [pii]

    CAS  PubMed  Google Scholar 

  52. Sarris M, Andersen KG, Randow F, Mayr L, Betz AG (2008) Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28(3):402–413. doi:S1074-7613(08)00072-1 [pii]10.1016/j.immuni.2008.01.012

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215. doi:S1074-7613(06)00102-6 [pii]10.1016/j.immuni.2006.01.003

    CAS  PubMed  Google Scholar 

  54. Wakita D, Sumida K, Iwakura Y, Nishikawa H, Ohkuri T, Chamoto K, Kitamura H, Nishimura T (2010) Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol 40(7):1927–1937. doi:10.1002/eji.200940157

    CAS  PubMed  Google Scholar 

  55. Kalkunte SS, Mselle TF, Norris WE, Wira CR, Sentman CL, Sharma S (2009) Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol 182(7):4085–4092. doi:182/7/4085 [pii]10.4049/jimmunol.0803769

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074. doi:nm1452 [pii]10.1038/nm1452

    CAS  PubMed  Google Scholar 

  57. Kyriakakis E, Cavallari M, Andert J, Philippova M, Koella C, Bochkov V, Erne P, Wilson SB, Mori L, Biedermann BC, Resink TJ, De Libero G (2010) Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur J Immunol 40(11):3268–3279. doi:10.1002/eji.201040619

    CAS  PubMed  Google Scholar 

  58. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. doi:nrc1877 [pii]10.1038/nrc1877

    CAS  PubMed  Google Scholar 

  59. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94(6):715–725. doi:S0092-8674(00)81731-6 [pii]

    CAS  PubMed  Google Scholar 

  60. Bottazzi B, Walter S, Govoni D, Colotta F, Mantovani A (1992) Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J Immunol 148(4):1280–1285

    CAS  PubMed  Google Scholar 

  61. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337. doi:nature03096 [pii]10.1038/nature03096

    CAS  PubMed Central  PubMed  Google Scholar 

  62. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299. doi:2007-1122 [pii]10.1634/stemcells.2007-1122

    PubMed  Google Scholar 

  63. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729. doi:10.1182/blood-2002-07-21042002-07-2104 [pii]

    CAS  PubMed  Google Scholar 

  64. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi:2004-04-1559 [pii]10.1182/blood-2004-04-1559

    CAS  PubMed  Google Scholar 

  65. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397. doi:10.1097/01.tp.0000214462.63943.1400007890-200605270-00007 [pii]

    PubMed  Google Scholar 

  66. Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11(10):702–711. doi:nri3064 [pii]10.1038/nri3064

    CAS  PubMed  Google Scholar 

  67. Montesinos MC, Shaw JP, Yee H, Shamamian P, Cronstein BN (2004) Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am J Pathol 164(6):1887–1892

    CAS  PubMed  Google Scholar 

  68. Alfranca A, Lopez-Oliva JM, Genis L, Lopez-Maderuelo D, Mirones I, Salvado D, Quesada AJ, Arroyo AG, Redondo JM (2008) PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFbeta/Alk5 signaling pathway. Blood 112(4):1120–1128. doi:blood-2007-09-112268 [pii]10.1182/blood-2007-09-112268

    CAS  PubMed  Google Scholar 

  69. Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65(3):599–608. doi:S0008-6363(04)00490-0 [pii]10.1016/j.cardiores.2004.10.036

    CAS  PubMed  Google Scholar 

  70. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976. doi:nature09421 [pii]10.1038/nature09421

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027. doi:JCO.2005.06.081 [pii]10.1200/JCO.2005.06.081

    CAS  PubMed  Google Scholar 

  72. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2(11):826–835. doi:10.1038/nrc925nrc925 [pii]

    CAS  PubMed  Google Scholar 

  73. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi:10.1210/er.2003-002725/4/581 [pii]

    CAS  PubMed  Google Scholar 

  74. Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, Imamura S, Uchiyama T (1996) The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 183(5):2185–2195

    CAS  PubMed  Google Scholar 

  75. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968

    CAS  PubMed  Google Scholar 

  76. Lee JC, Chow NH, Wang ST, Huang SM (2000) Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer 36(6):748–753. doi:S0959-8049(00)00003-4 [pii]

    CAS  PubMed  Google Scholar 

  77. Fontanini G, Lucchi M, Vignati S, Mussi A, Ciardiello F, De Laurentiis M, De Placido S, Basolo F, Angeletti CA, Bevilacqua G (1997) Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst 89(12):881–886

    CAS  PubMed  Google Scholar 

  78. Gorski DH, Leal AD, Goydos JS (2003) Differential expression of vascular endothelial growth factor-A isoforms at different stages of melanoma progression. J Am Coll Surg 197(3):408–418. doi:S1072-7515(03)00388-0 [pii]10.1016/S1072-7515(03)00388-0

    PubMed  Google Scholar 

  79. George DJ, Halabi S, Shepard TF, Vogelzang NJ, Hayes DF, Small EJ, Kantoff PW (2001) Prognostic significance of plasma vascular endothelial growth factor levels in patients with hormone-refractory prostate cancer treated on Cancer and Leukemia Group B 9480. Clin Cancer Res 7(7):1932–1936

    CAS  PubMed  Google Scholar 

  80. Berns EM, Klijn JG, Look MP, Grebenchtchikov N, Vossen R, Peters H, Geurts-Moespot A, Portengen H, van Staveren IL, Meijer-van Gelder ME, Bakker B, Sweep FC, Foekens JA (2003) Combined vascular endothelial growth factor and TP53 status predicts poor response to tamoxifen therapy in estrogen receptor-positive advanced breast cancer. Clin Cancer Res 9(4):1253–1258

    CAS  PubMed  Google Scholar 

  81. Paley PJ, Staskus KA, Gebhard K, Mohanraj D, Twiggs LB, Carson LF, Ramakrishnan S (1997) Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80(1):98–106. doi:10.1002/(SICI)1097-0142(19970701)80:1 < 98::AID-CNCR13 > 3.0.CO;2-A [pii]

    CAS  PubMed  Google Scholar 

  82. Zhang L, Conejo-Garcia J-R, Yang N, Huang W, Mohamed-Hadley A, Yao W, Benencia F, Coukos G (2002) Different effects of glucose starvation on expression and stability of VEGF mRNA isoforms in murine ovarian cancer cells. Biochem Biophys Res Commun 292(4):860–868

    CAS  PubMed  Google Scholar 

  83. Zhang L, Yang N, Katsaros D, Huang W, Park J-W, Fracchioli S, Vezzani C, Rigault delaLIA, Yao W, Rubin SC, Coukos G (2003) The oncogene phosphatidylinositol 3’-kinase catalytic subunit {alpha} promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma. Cancer Res 63(14):4225–4231

    CAS  PubMed  Google Scholar 

  84. Zhang L, Yang N, Park J-W, Katsaros D, Fracchioli S, Cao G, O’Brien-Jenkins A, Randall TC, Rubin SC, Coukos G (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63(12):3403–3412

    CAS  PubMed  Google Scholar 

  85. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591. doi:nrc2403 [pii]10.1038/nrc2403

    CAS  PubMed  Google Scholar 

  86. Nestle FO, Burg G, Fah J, Wrone-Smith T, Nickoloff BJ (1997) Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 150(2):641–651

    CAS  PubMed  Google Scholar 

  87. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6(5):1755–1766

    CAS  PubMed  Google Scholar 

  88. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    CAS  PubMed  Google Scholar 

  89. Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3(3):483–490

    CAS  PubMed  Google Scholar 

  90. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H (2002) Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 80(5):477–483. doi:1115 [pii]10.1046/j.1440-1711.2002.01115.x

    PubMed  Google Scholar 

  91. Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23(9):445–449. doi:S1471490602022810 [pii]

    CAS  PubMed  Google Scholar 

  92. Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N, Amigorena S, Hermine O, Durandy A (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162(8):4567–4575

    CAS  PubMed  Google Scholar 

  93. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93(5):1634–1642

    CAS  PubMed  Google Scholar 

  94. Della Porta M, Danova M, Rigolin GM, Brugnatelli S, Rovati B, Tronconi C, Fraulini C, Russo Rossi A, Riccardi A, Castoldi G (2005) Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 68(2–3):276–284. doi:OCL20050682_3276 [pii]10.1159/000086784

    CAS  PubMed  Google Scholar 

  95. Takahashi A, Kono K, Ichihara F, Sugai H, Fujii H, Matsumoto Y (2004) Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol Immunother 53(6):543–550. doi:10.1007/s00262-003-0466-8

    CAS  PubMed  Google Scholar 

  96. Ishida T, Oyama T, Carbone DP, Gabrilovich DI (1998) Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 161(9):4842–4851

    CAS  PubMed  Google Scholar 

  97. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166

    CAS  PubMed  Google Scholar 

  98. Ohm JE, Shurin MR, Esche C, Lotze MT, Carbone DP, Gabrilovich DI (1999) Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 163(6):3260–3268. doi:ji_v163n6p3260 [pii]

    CAS  PubMed  Google Scholar 

  99. Ohm JE, Carbone DP (2001) VEGF as a mediator of tumor-associated immunodeficiency. Immunol Res 23(2–3):263–272. doi:IR:23:2-3:263 [pii]10.1385/IR:23:2-3:263

    CAS  PubMed  Google Scholar 

  100. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160(3):1224–1232

    CAS  PubMed  Google Scholar 

  101. Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174(1):215–222. doi:174/1/215 [pii]

    CAS  PubMed  Google Scholar 

  102. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57(8):1115–1124. doi:10.1007/s00262-007-0441-x

    CAS  PubMed  Google Scholar 

  103. Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, Sosman JA, Gabrilovich DI (2007) Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin Cancer Res 13(16):4840–4848. doi:13/16/4840 [pii]10.1158/1078-0432.CCR-07-0409

    CAS  PubMed  Google Scholar 

  104. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5(10):2963–2970

    CAS  PubMed  Google Scholar 

  105. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E (2003) Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 102(3):964–971. doi:10.1182/blood-2002-12-37382002-12-3738 [pii]

    CAS  PubMed  Google Scholar 

  106. Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA (2009) Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One 4(11):e7669. doi:10.1371/journal.pone.0007669

    PubMed Central  PubMed  Google Scholar 

  107. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, Gordon A, Dhurandhar N, Myers L, Berggren R, Hemminki A, Alvarez RD, Emilie D, Curiel DT, Chen L, Zou W (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9(5):562–567. doi:10.1038/nm863nm863 [pii]

    CAS  PubMed  Google Scholar 

  108. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308. doi:nrc2355 [pii]10.1038/nrc2355

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi:10.1056/NEJMoa020177348/3/203 [pii]

    CAS  PubMed  Google Scholar 

  110. Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL, Freeman SM (1997) Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 74(5):492–501. doi:10.1002/(SICI)1097-0215(19971021)74:5 < 492::AID-IJC3 > 3.0.CO;2-Z [pii]

    CAS  PubMed  Google Scholar 

  111. Vesalainen S, Lipponen P, Talja M, Syrjanen K (1994) Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 30A(12):1797–1803

    CAS  PubMed  Google Scholar 

  112. Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61(10):3932–3936

    CAS  PubMed  Google Scholar 

  113. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58(16):3491–3494

    CAS  PubMed  Google Scholar 

  114. Huang Y, Chen X, Dikov MM, Novitskiy SV, Mosse CA, Yang L, Carbone DP (2007) Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110(2):624–631. doi:blood-2007-01-065714 [pii]10.1182/blood-2007-01-065714

    CAS  PubMed  Google Scholar 

  115. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12):4878–4886. doi:10.1182/blood-2002-07-19562002-07-1956 [pii]

    CAS  PubMed  Google Scholar 

  116. Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, Albert J, Sparwasser T, Sakaguchi S, Westendorf AM, Schadendorf D, Buer J, Helfrich I (2012) Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med 209(11):2001–2016. doi:jem.20111497 [pii]10.1084/jem.20111497

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Shin JY, Yoon IH, Kim JS, Kim B, Park CG (2009) Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell Immunol 256(1-2):72–78. doi:S0008-8749(09)00009-4 [pii]10.1016/j.cellimm.2009.01.006

    CAS  PubMed  Google Scholar 

  118. Kim YS, Hong SW, Choi JP, Shin TS, Moon HG, Choi EJ, Jeon SG, Oh SY, Gho YS, Zhu Z, Kim YK (2009) Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways. J Immunol 183(8):5113–5120. doi:jimmunol.0901566 [pii]10.4049/jimmunol.0901566

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Gavalas NG, Tsiatas M, Tsitsilonis O, Politi E, Ioannou K, Ziogas AC, Rodolakis A, Vlahos G, Thomakos N, Haidopoulos D, Terpos E, Antsaklis A, Dimopoulos MA, Bamias A (2012) VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br J Cancer 107(11):1869–1875. doi:bjc2012468 [pii]10.1038/bjc.2012.468

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Ziogas AC, Gavalas NG, Tsiatas M, Tsitsilonis O, Politi E, Terpos E, Rodolakis A, Vlahos G, Thomakos N, Haidopoulos D, Antsaklis A, Dimopoulos MA, Bamias A (2012) VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. Int J Cancer 130(4):857–864. doi:10.1002/ijc.26094

    CAS  PubMed  Google Scholar 

  121. Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ (2006) Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer 107(1):67–74. doi:10.1002/cncr.21956

    CAS  PubMed  Google Scholar 

  122. Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR, Armstrong TD, Hicklin DJ, Jaffee EM, Emens LA (2007) A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res 13(13):3951–3959. doi:13/13/3951 [pii]10.1158/1078-0432.CCR-07-0374

    CAS  PubMed  Google Scholar 

  123. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan Tu G, Prell R, VanRoey MJ, Simmons AD, Jooss K (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12(22):6808–6816. doi:12/22/6808 [pii]10.1158/1078-0432.CCR-06-1558

    CAS  PubMed  Google Scholar 

  124. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854. doi:10.1126/science.10765141076514 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208. doi:10.1146/annurev.immunol.24.021605.090733

    CAS  PubMed  Google Scholar 

  126. Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N, Coulie PG, Boon T (2005) Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 201(2):249–257. doi:jem.20041378 [pii]10.1084/jem.20041378

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Francavilla C, Maddaluno L, Cavallaro U (2009) The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 19(5):298–309. doi:S1044-579X(09)00067-4 [pii]10.1016/j.semcancer.2009.05.004

    CAS  PubMed  Google Scholar 

  128. Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111(1):1–6. doi:10.1046/j.1523–1747.1998.00262.x

    CAS  PubMed  Google Scholar 

  129. Min JK, Lee YM, Kim JH, Kim YM, Kim SW, Lee SY, Gho YS, Oh GT, Kwon YG (2005) Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway. Circ Res 96(3):300–307. doi:01.RES.0000155330.07887.EE [pii]10.1161/01.RES.0000155330.07887.EE

    CAS  PubMed  Google Scholar 

  130. Griffioen AW, Damen CA, Blijham GH, Groenewegen G (1996) Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88(2):667–673

    CAS  PubMed  Google Scholar 

  131. Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56(5):1111–1117

    CAS  PubMed  Google Scholar 

  132. Bouzin C, Brouet A, De Vriese J, Dewever J, Feron O (2007) Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol 178(3):1505–1511. doi:178/3/1505 [pii]

    CAS  PubMed  Google Scholar 

  133. Dirkx AE, Oude Egbrink MG, Kuijpers MJ, van der Niet ST, Heijnen VV, Bouma-ter Steege JC, Wagstaff J, Griffioen AW (2003) Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 63(9):2322–2329

    CAS  PubMed  Google Scholar 

  134. Nelson J, Bagnato A, Battistini B, Nisen P (2003) The endothelin axis: emerging role in cancer. Nat Rev Cancer 3(2):110–116. doi:10.1038/nrc990nrc990 [pii]

    CAS  PubMed  Google Scholar 

  135. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, Katsaros D, O’Brien-Jenkins A, Gimotty PA, Coukos G (2008) Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med 14(1):28–36. doi:nm1699 [pii]10.1038/nm1699

    CAS  PubMed  Google Scholar 

  136. Bagnato A, Salani D, Di Castro V, Wu-Wong JR, Tecce R, Nicotra MR, Venuti A, Natali PG (1999) Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res 59(3):720–727

    CAS  PubMed  Google Scholar 

  137. Shetty S, Weston CJ, Oo YH, Westerlund N, Stamataki Z, Youster J, Hubscher SG, Salmi M, Jalkanen S, Lalor PF, Adams DH (2011) Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol 186(7):4147–4155. doi:jimmunol.1002961 [pii]10.4049/jimmunol.1002961

    CAS  PubMed  Google Scholar 

  138. Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, Koch M, Buchler M, Weitz J, Schirrmacher V, Beckhove P (2007) Role of tumor endothelium in CD4+CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst 99(15):1188–1199. doi:djm064 [pii]10.1093/jnci/djm064

    CAS  PubMed  Google Scholar 

  139. Sata M, Walsh K (1998) TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med 4(4):415–420

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Secchiero P, Zauli G (2008) The puzzling role of TRAIL in endothelial cell biology. Arterioscler Thromb Vasc Biol 28(2):e4; author reply e5–6. doi:28/2/e4 [pii]10.1161/ATVBAHA.107.158451

    CAS  PubMed  Google Scholar 

  141. Ma L, Mauro C, Cornish GH, Chai JG, Coe D, Fu H, Patton D, Okkenhaug K, Franzoso G, Dyson J, Nourshargh S, Marelli-Berg FM (2010) Ig gene-like molecule CD31 plays a nonredundant role in the regulation of T-cell immunity and tolerance. Proc Natl Acad Sci U S A 107(45):19461–19466. doi:1011748107 [pii]10.1073/pnas.1011748107

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Hernandez GL, Volpert OV, Iniguez MA, Lorenzo E, Martinez-Martinez S, Grau R, Fresno M, Redondo JM (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193(5):607–620

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Pirtskhalaishvili G, Nelson JB (2000) Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate 44(1):77–87. doi:10.1002/1097-0045(20000615)44:1 < 77::AID-PROS10 > 3.0.CO;2-G [pii]

    CAS  PubMed  Google Scholar 

  144. Choi J, Enis DR, Koh KP, Shiao SL, Pober JS (2004) T lymphocyte-endothelial cell interactions. Annu Rev Immunol 22:683–709. doi:10.1146/annurev.immunol.22.012703.104639

    CAS  PubMed  Google Scholar 

  145. Mulligan JK, Day TA, Gillespie MB, Rosenzweig SA, Young MR (2009) Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Hum Immunol 70(6):375–382. doi:S0198-8859(09)00019-6 [pii]10.1016/j.humimm.2009.01.014

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Mulligan JK, Young MR (2009) Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol Immunother. doi:10.1007/s00262-009-0747-y

    Google Scholar 

  147. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125. doi:IMR767 [pii]10.1111/j.1600-065X.2009.00767.x

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Mazanet MM, Hughes CC (2002) B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol 169(7):3581–3588

    CAS  PubMed  Google Scholar 

  149. Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T, Greenfield EA, Liang SC, Sharpe AH, Lichtman AH, Freeman GJ (2003) Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol 33(11):3117–3126. doi:10.1002/eji.200324270

    CAS  PubMed  Google Scholar 

  150. Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, Vogel J, Wagner CA, Loffing-Cueni D, Kurrer M, Ludewig B, Oxenius A (2012) Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J Exp Med 209(13):2485–2499. doi:jem.20121015 [pii]10.1084/jem.20121015

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Brunner A, Hinterholzer S, Riss P, Heinze G, Brustmann H (2012) Immunoexpression of B7-H3 in endometrial cancer: relation to tumor T-cell infiltration and prognosis. Gynecol Oncol 124(1):105–111. doi:S0090-8258(11)00782-7 [pii]10.1016/j.ygyno.2011.09.012

    CAS  PubMed  Google Scholar 

  152. Zang X, Sullivan PS, Soslow RA, Waitz R, Reuter VE, Wilton A, Thaler HT, Arul M, Slovin SF, Wei J, Spriggs DR, Dupont J, Allison JP (2010) Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod Pathol 23(8):1104–1112. doi:modpathol201095 [pii]10.1038/modpathol.2010.95

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Casos K, Siguero L, Fernandez-Figueras MT, Leon X, Sarda MP, Vila L, Camacho M (2011) Tumor cells induce COX-2 and mPGES-1 expression in microvascular endothelial cells mainly by means of IL-1 receptor activation. Microvasc Res 81(3):261–268. doi:S0026-2862(11)00010-0 [pii]10.1016/j.mvr.2011.01.006

    CAS  PubMed  Google Scholar 

  154. Mulligan JK, Rosenzweig SA, Young MR (2010) Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2. J Immunother 33(2):126–135. doi:10.1097/CJI.0b013e3181b91c9c

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Huang X, Bai X, Cao Y, Wu J, Huang M, Tang D, Tao S, Zhu T, Liu Y, Yang Y, Zhou X, Zhao Y, Wu M, Wei J, Wang D, Xu G, Wang S, Ma D, Zhou J (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J Exp Med. doi:jem.20090397 [pii]10.1084/jem.20090397

    Google Scholar 

  156. Batista CE, Juhasz C, Muzik O, Kupsky WJ, Barger G, Chugani HT, Mittal S, Sood S, Chakraborty PK, Chugani DC (2009) Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol Imaging Biol 11(6):460–466. doi:10.1007/s11307-009-0225-0

    PubMed Central  PubMed  Google Scholar 

  157. Riesenberg R, Weiler C, Spring O, Eder M, Buchner A, Popp T, Castro M, Kammerer R, Takikawa O, Hatz RA, Stief CG, Hofstetter A, Zimmermann W (2007) Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res 13(23):6993–7002. doi:13/23/6993 [pii]10.1158/1078-0432.CCR-07-0942

    CAS  PubMed  Google Scholar 

  158. Blaschitz A, Gauster M, Fuchs D, Lang I, Maschke P, Ulrich D, Karpf E, Takikawa O, Schimek MG, Dohr G, Sedlmayr P (2011) Vascular endothelial expression of indoleamine 2,3-dioxygenase 1 forms a positive gradient towards the feto-maternal interface. PLoS One 6(7):e21774. doi:10.1371/journal.pone.0021774PONE-D-11-03497 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9):1363–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Nonaka H, Saga Y, Fujiwara H, Akimoto H, Yamada A, Kagawa S, Takei Y, Machida S, Takikawa O, Suzuki M (2011) Indoleamine 2,3-dioxygenase promotes peritoneal dissemination of ovarian cancer through inhibition of natural killercell function and angiogenesis promotion. Int J Oncol 38(1):113–120

    CAS  PubMed  Google Scholar 

  161. Liu H, Liu L, Visner GA (2007) Nonviral gene delivery with indoleamine 2,3-dioxygenase targeting pulmonary endothelium protects against ischemia-reperfusion injury. Am J Transplant 7(10):2291–2300. doi:AJT1942 [pii]10.1111/j.1600-6143.2007.01942.x

    CAS  PubMed  Google Scholar 

  162. Beutelspacher SC, Pillai R, Watson MP, Tan PH, Tsang J, McClure MO, George AJ, Larkin DF (2006) Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression. Eur J Immunol 36(3):690–700. doi:10.1002/eji.200535238

    CAS  PubMed  Google Scholar 

  163. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16(3):279–285. doi:nm.2092 [pii]10.1038/nm.2092

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Li Y, Tredget EE, Ghaffari A, Lin X, Kilani RT, Ghahary A (2006) Local expression of indoleamine 2,3-dioxygenase protects engraftment of xenogeneic skin substitute. J Invest Dermatol 126(1):128–136. doi:5700022 [pii]10.1038/sj.jid.5700022

    CAS  PubMed  Google Scholar 

  165. Fu H, Khan A, Coe D, Zaher S, Chai JG, Kropf P, Muller I, Larkin DF, George AJ (2011) Arginine depletion as a mechanism for the immune privilege of corneal allografts. Eur J Immunol 41(10):2997–3005. doi:10.1002/eji.201141683

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121(22):2437–2445. doi:121/22/2437 [pii]10.1161/CIRCULATIONAHA.109.916346

    PubMed Central  PubMed  Google Scholar 

  167. Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G (2005) Vascular leukocytes contribute to tumor vascularization. Blood 105(2):679–681. doi:10.1182/blood-2004-05-19062004-05-1906 [pii]

    CAS  PubMed  Google Scholar 

  168. De Palma M, Venneri MA, Roca C, Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9(6):789–795. doi:10.1038/nm871nm871 [pii]

    CAS  PubMed  Google Scholar 

  169. Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138. doi:jem.20080099 [pii]10.1084/jem.20080099

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Basu GD, Tinder TL, Bradley JM, Tu T, Hattrup CL, Pockaj BA, Mukherjee P (2006) Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol 177(4):2391–2402. doi:177/4/2391 [pii]

    CAS  PubMed  Google Scholar 

  171. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70(15):6171–6180. doi:0008-5472.CAN-10-0153 [pii]10.1158/0008-5472.CAN-10-0153

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP, Rosenberg SA (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 120(11):3953–3968. doi:43490 [pii]10.1172/JCI43490

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Kandalaft LE, Powell DJ Jr, Singh N, Coukos G (2010) Immunotherapy for ovarian cancer: what’s next? J Clin Oncol. doi:JCO.2009.27.2369 [pii]10.1200/JCO.2009.27.2369

    Google Scholar 

  174. Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM (1996) Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med 184(3):981–992

    CAS  PubMed  Google Scholar 

  175. Sgadari C, Farber JM, Angiolillo AL, Liao F, Teruya-Feldstein J, Burd PR, Yao L, Gupta G, Kanegane C, Tosato G (1997) Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood 89(8):2635–2643

    CAS  PubMed  Google Scholar 

  176. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197(11):1537–1549. doi:10.1084/jem.20021897. jem.20021897 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Institutes of Health (NIH) Transformative R01 CA156695 (GC) and a grant by the Ovarian Cancer Research Fund (GTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Coukos MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Motz, G., Coukos, G. (2014). Angiogenesis and Immune Suppression in Cancer. In: Gabrilovich, D., Hurwitz, A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8056-4_7

Download citation

Publish with us

Policies and ethics