Skip to main content
Log in

Lymphangiogenesis in rat asthma model

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Although bronchial angiogenesis has been well documented in allergic asthma, lymphangiogenesis has not been widely studied. Therefore, we evaluated changes in lung lymphatics in a rat model of allergen-induced asthma using house dust mite (Der p 1; 100 μg/challenge). Additionally, properties of isolated lung lymphatic endothelial cells (CD45, CD141+, LYVE-1+, Prox-1+) were studied in vitro. Three weeks after the onset of intranasal allergen exposure (twice-weekly), an increase in the number of lung lymphatic vessels was measured (34% increase) by lung morphometry. New lymphatic structures were seen predominantly in the peribronchial and periarterial interstitial space but also surrounding large airways. Isolated lymphatic endothelial cells from sensitized lungs showed enhanced proliferation (% Ki67+), chemotaxis, and tube formation (number and length) compared to lymphatic endothelial cells isolated from naive rat lungs. This hyper-proliferative lymphangiogenic phenotype was preserved through multiple cell passages (2–8). Lymphatic endothelial cells isolated from naive and HDM-sensitized rats produced similar in vitro levels of VEGF-C, VEGF-D, and VEGFR3 protein, each recognized as critical lymphangiogenic factors. Inhibition with anti-VEGFR (axitinib, 0.1 μM) blocked proliferation and chemotaxis. Results suggest that in vivo sensitization causes fundamental changes to lymphatic endothelium, which are retained in vitro, and may relate to VEGFR downstream signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bailey SR, Boustany S, Burgess JK, Hirst SJ, Sharma HS, Simcock DE, Suravaram PR, Weckmann M (2009) Airway vascular reactivity and vascularisation in human chronic airway disease. Pulm Pharmacol Ther 22:417–425

    Article  CAS  PubMed  Google Scholar 

  2. Detoraki A, Granata F, Staibano S, Rossi FW, Marone G, Genovese A (2010) Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy 65:946–958

    Article  CAS  PubMed  Google Scholar 

  3. Salvato G (2001) Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax 56:902–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karmouty-Quintana H, Siddiqui S, Hassan M, Tsuchiya K, Risse PA, Xicota-Vila L, Marti-Solano M, Martin JG (2012) Treatment with a sphingosine-1-phosphate analog inhibits airway remodeling following repeated allergen exposure. Am J Physiol Lung Cell Mol Physiol 302:L736–L745

    Article  CAS  PubMed  Google Scholar 

  5. Van der Velden J, Barker D, Barcham G, Koumoundouros E, Snibson K (2012) Increased vascular density is a persistent feature of airway remodeling in a sheep model of chronic asthma. Exp Lung Res 38:307–315

    Article  PubMed  Google Scholar 

  6. Chung KF, Rogers DF, Barnes PJ, Evans TW (1990) The role of increased airway microvascular permeability and plasma exudation in asthma. Eur Respir J 3:329–337

    CAS  PubMed  Google Scholar 

  7. Brown R, Mitzner W, Wagner E (1997) Interaction between airway edema and lung inflation on responsiveness of individual airways in vivo. J Appl Physiol 83:366–370

    CAS  PubMed  Google Scholar 

  8. Brown RH, Zerhouni EA, Mitzner W (1995) Airway edema potentiates airway reactivity. J Appl Physiol 79(4):1242–1248

    CAS  PubMed  Google Scholar 

  9. Aebischer D, Iolyeva M, Halin C (2014) The inflammatory response of lymphatic endothelium. Angiogenesis 17:383–393

    Article  CAS  PubMed  Google Scholar 

  10. Ebina M (2008) Remodeling of airway walls in fatal asthmatics decreases lymphatic distribution; beyond thickening of airway smooth muscle layers. Allergol Int 57:165–174

    Article  PubMed  Google Scholar 

  11. Eifan AO, Orban NT, Jacobson MR, Durham SR (2015) Severe persistent allergic rhinitis: inflammation but no histologic features of structural upper airway remodeling. Am J Respir Crit Care Med 192:1431–1439

    Article  CAS  PubMed  Google Scholar 

  12. Okazaki T, Ni A, Baluk P, Ayeni OA, Kearley J, Coyle AJ, Humbles A, McDonald DM (2009) Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol 174:2388–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kretschmer S, Dethlefsen I, Hagner-Benes S, Marsh LM, Garn H, Konig P (2013) Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 as a marker. PLoS ONE 8:e55201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin K, Kataru RP, Park HJ, Kwon BI, Kim TW, Hong YK, Lee SH (2015) TH2 cells and their cytokines regulate formation and function of lymphatic vessels. Nat Commun 6:6196

    Article  CAS  PubMed  Google Scholar 

  15. Wagner EM, Jenkins J, Schmieder A, Eldridge L, Zhang Q, Moldobaeva A, Zhang H, Allen JS, Yang X, Mitzner W, Keupp J, Caruthers SD, Wickline SA, Lanza GM (2014) Angiogenesis and airway reactivity in asthmatic brown Norway rats. Angiogenesis 18:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Verloop M (1949) On the arteriae bronchiales and their anastomosing with the arteria pulmonalis in some rodents; a micro-anatomical study. Acta Anat 7:1–32

    Article  CAS  PubMed  Google Scholar 

  17. Butler J (ed) (1992) The bronchial circulation, vol 57. Marcel Dekker Inc, New York

    Google Scholar 

  18. Weibel ER (1960) Early stages in the development of collateral circulation to the lung in the rat. Circ Res 8:353–376

    Article  CAS  PubMed  Google Scholar 

  19. Breysse PN, Diette GB, Matsui EC, Butz AM, Hansel NN, McCormack MC (2010) Indoor air pollution and asthma in children. Proc Am Thorac Soc 7:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baluk P, McDonald DM (2008) Markers for microscopic imaging of lymphangiogenesis and angiogenesis. Ann N Y Acad Sci 1131:1–12

    Article  PubMed  Google Scholar 

  21. Boehme MW, Galle P, Stremmel W (2002) Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology 107:340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Song K, Zhou L, Xie Z, Zhou P, Zhao Y, Han Y, Xu X, Li P (2015) Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3B1 (HS3ST3B1) promotes angiogenesis and proliferation by induction of VEGF in acute myeloid leukemia cells. J Cell Biochem 116:1101–1112

    Article  CAS  PubMed  Google Scholar 

  23. Moldobaeva A, Baek A, Eldridge L, Wagner EM (2010) Differential activity of pro-angiogenic CXC chemokines. Microvasc Res 80:18–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng W, Aspelund A, Alitalo K (2014) Lymphangiogenic factors, mechanisms, and applications. J Clin Investig 124:878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Randall TD (2010) Bronchus-associated lymphoid tissue (BALT) structure and function. Adv Immunol 107:187–241

    Article  CAS  PubMed  Google Scholar 

  27. Bruyere F, Noel A (2010) Lymphangiogenesis: in vitro and in vivo models. FASEB J 24:8–21

    Article  PubMed  Google Scholar 

  28. Sweat RS, Sloas DC, Murfee WL (2014) VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirc 21:532–540

    Article  CAS  Google Scholar 

  29. Kerjaschki D (2014) The lymphatic vasculature revisited. J Clin Investig 124:874–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swartz MA, Randolph GJ (2014) Introduction to the special issue on lymphangiogenesis in inflammation. Angiogenesis 17:323–324

    Article  PubMed  Google Scholar 

  31. Lee E, Pandey NB, Popel AS (2015) Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Rev Mol Med 17:e3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Investig 115:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao LC, McDonald DM (2014) Plasticity of airway lymphatics in development and disease. Adv Anat Embryol Cell Biol 214:41–54

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baluk P, Adams A, Phillips K, Feng J, Hong YK, Brown MB, McDonald DM (2014) Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation. Am J Pathol 184:1577–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baluk P, Yao LC, Feng J, Romano T, Jung SS, Schreiter JL, Yan L, Shealy DJ, McDonald DM (2009) TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Investig 119:2954–2964

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Baluk P, Hogmalm A, Bry M, Alitalo K, Bry K, McDonald DM (2013) Transgenic overexpression of interleukin-1beta induces persistent lymphangiogenesis but not angiogenesis in mouse airways. Am J Pathol 182:1434–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM (2012) Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am J Pathol 180:2561–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204:2349–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mori M, Andersson CK, Graham GJ, Lofdahl CG, Erjefalt JS (2013) Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD. Respir Res 14:65–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamashita M (2015) Lymphangiogenesis and lesion heterogeneity in interstitial lung diseases. Clin Med Insights Circ Respir Pulm Med 9:111–121

    PubMed  Google Scholar 

  41. Glasgow CG, El-Chemaly S, Moss J (2012) Lymphatics in lymphangioleiomyomatosis and idiopathic pulmonary fibrosis. Eur Respir Rev 21:196–206

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cui Y, Liu K, Monzon-Medina ME, Padera RF, Wang H, George G, Toprak D, Abdelnour E, D’Agostino E, Goldberg HJ, Perrella MA, Forteza RM, Rosas IO, Visner G, El-Chemaly S (2015) Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection. J Clin Investig 125:4255–4268

    Article  PubMed  PubMed Central  Google Scholar 

  43. Leak LV, Jamuar MP (1983) Ultrastructure of pulmonary lymphatic vessels. Am Rev Respir Dis 128:S59–S65

    CAS  PubMed  Google Scholar 

  44. Ohtani O, Ohtani Y (2008) Organization and developmental aspects of lymphatic vessels. Arch Histol Cytol 71:1–22

    Article  PubMed  Google Scholar 

  45. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21:4593–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G (2002) Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225:351–357

    Article  CAS  PubMed  Google Scholar 

  47. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G (2008) Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22:3282–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sweat RS, Stapor PC, Murfee WL (2012) Relationships between lymphangiogenesis and angiogenesis during inflammation in rat mesentery microvascular networks. Lymphat Res Biol 10:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rafii S, Butler JM, Ding BS (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Podgrabinska S, Skobe M (2014) Role of lymphatic vasculature in regional and distant metastases. Microvasc Res 95:46–52

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS, Sugaya K, Tumes DJ, Yamamoto H, Hara T, Tani-Ichi S, Ikuta K, Okamoto Y, Nakayama T (2016) Thy1+IL-7+lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci USA 113:E2842–E2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Heart, Lung, and Blood Institute (Grant Nos. HL10342 and HL113392).

Authors’ contributions

A.M. and E.M.W. were involved in conception and design. A.M., J.J., and Q.Z. carried out experimental work. A.M. and E.M.W. performed analysis and interpretation. A.M. and E.M.W. finalized manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Wagner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Lymphatic endothelial cells in culture. A. Bright-field exposure showing cobblestone morphology of confluent monolayer; B. anti-LYVE-1+ staining (green), nuclei were counterstained with DAPI (blue) at enhanced magnification; and C. anti-Prox-1+ nuclei. Bar = 50 μm (TIFF 1536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moldobaeva, A., Jenkins, J., Zhong, Q. et al. Lymphangiogenesis in rat asthma model. Angiogenesis 20, 73–84 (2017). https://doi.org/10.1007/s10456-016-9529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9529-2

Keywords

Navigation