Skip to main content

Plasticity of Airway Lymphatics in Development and Disease

  • Chapter
  • First Online:
Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

The dynamic nature of lymphatic vessels is reflected by structural and functional modifications that coincide with changes in their environment. Lymphatics in the respiratory tract undergo rapid changes around birth, during adaptation to air breathing, when lymphatic endothelial cells develop button-like intercellular junctions specialized for efficient fluid uptake and transport. In inflammatory conditions, lymphatic vessels proliferate and undergo remodeling to accommodate greater plasma leakage and immune cell trafficking. However, the newly formed lymphatics are abnormal, and resolution of inflammation is not accompanied by complete reversal of the lymphatic vessel changes back to the baseline. As the understanding of lymphatic plasticity advances, approaches for eliminating the abnormal vessels and improving the functionality of those that remain move closer to reality. This chapter provides an overview of what is known about lymphatic vessel growth, remodeling, and other forms of plasticity that occur during development or inflammation, with an emphasis on the respiratory tract. Also addressed is the limited reversibility of changes in lymphatics during the resolution of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aurora, A. B., Baluk, P., Zhang, D., Sidhu, S. S., Dolganov, G. M., Basbaum, C., et al. (2005). Immune complex-dependent remodeling of the airway vasculature in response to a chronic bacterial infection. Journal of Immunology, 175, 6319–6326.

    CAS  Google Scholar 

  • Baldwin, M. E., Halford, M. M., Roufail, S., Williams, R. A., Hibbs, M. L., Grail, D., et al. (2005). Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Molecular and Cellular Biology, 25, 2441–2449.

    Article  PubMed  CAS  Google Scholar 

  • Baluk, P., Fuxe, J., Hashizume, H., Romano, T., Lashnits, E., Butz, S., et al. (2007). Functionally specialized junctions between endothelial cells of lymphatic vessels. Journal of Experimental Medicine, 204, 2349–2362.

    Article  PubMed  CAS  Google Scholar 

  • Baluk, P., Hogmalm, A., Bry, M., Alitalo, K., Bry, K., & McDonald, D. M. (2013). Transgenic overexpression of interleukin-1beta induces persistent lymphangiogenesis but not angiogenesis in mouse airways. American Journal of Pathology, 182, 1434–1447.

    Article  PubMed  CAS  Google Scholar 

  • Baluk, P., Tammela, T., Ator, E., Lyubynska, N., Achen, M. G., Hicklin, D. J., et al. (2005). Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 115, 247–257.

    PubMed  CAS  Google Scholar 

  • Baluk, P., Yao, L. C., Feng, J., Romano, T., Jung, S. S., Schreiter, J. L., et al. (2009). TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. Journal of Clinical Investigation, 119, 2954–2964.

    PubMed  CAS  Google Scholar 

  • Barnes, P. J. (2005). Molecular mechanisms and cellular effects of glucocorticosteroids. Immunology and Allergy Clinics of North America, 25, 451–468.

    Article  PubMed  Google Scholar 

  • Casley-Smith, J. (1972). The role of the endothelial intercellular junctions in the functioning of the intial lymphatics. Angiologica, 9, 106–131.

    PubMed  CAS  Google Scholar 

  • Chu, H. W., Campbell, J. A., Rino, J. G., Harbeck, R. J., & Martin, R. J. (2004). Inhaled fluticasone propionate reduces concentration of Mycoplasma pneumoniae, inflammation, and bronchial hyperresponsiveness in lungs of mice. Journal of Infectious Diseases, 189, 1119–1127.

    Article  PubMed  CAS  Google Scholar 

  • Cole, T. J., Blendy, J. A., Monaghan, A. P., Krieglstein, K., Schmid, W., Aguzzi, A., et al. (1995). Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes and Development, 9, 1608–1621.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen, C., Maruyama, K., Jackson, D. G., Streilein, J. W., & Kruse, F. E. (2006). Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea, 25, 443–447.

    Article  PubMed  Google Scholar 

  • Dejana, E., Orsenigo, F., Molendini, C., Baluk, P., & McDonald, D. M. (2009a). Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell and Tissue Research, 335, 17–25.

    Article  PubMed  Google Scholar 

  • Dejana, E., Tournier-Lasserve, E., & Weinstein, B. M. (2009b). The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Developmental Cell, 16, 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Dunnill, M. S. (1960). The pathology of asthma, with special reference to changes in the bronchial mucosa. Journal of Clinical Pathology, 13, 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Ebina, M. (2008). Remodeling of airway walls in fatal asthmatics decreases lymphatic distribution; beyond thickening of airway smooth muscle layers. Allergology International, 57, 165–174.

    Article  PubMed  Google Scholar 

  • Ebina, M., Shibata, N., Ohta, H., Hisata, S., Tamada, T., Ono, M., et al. (2010). The disappearance of subpleural and interlobular lymphatics in idiopathic pulmonary fibrosis. Lymphatic Research and Biology, 8, 199–207.

    Article  PubMed  CAS  Google Scholar 

  • El-Chemaly, S., Levine, S. J., & Moss, J. (2008). Lymphatics in lung disease. Annals of the New York Academy of Sciences, 1131, 195–202.

    Article  PubMed  Google Scholar 

  • El-Chemaly, S., Malide, D., Zudaire, E., Ikeda, Y., Weinberg, B. A., Pacheco-Rodriguez, G., et al. (2009). Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 106, 3958–3963.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., & Ingber, D. E. (1987). Angiostatic steroids. Method of discovery and mechanism of action. Annals of Surgery, 206, 374–383.

    Article  PubMed  CAS  Google Scholar 

  • Henske, E. P., & McCormack, F. X. (2012). Lymphangioleiomyomatosis: A wolf in sheep’s clothing. Journal of Clinical Investigation, 122, 3807–3816.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Y. K., Lange-Asschenfeldt, B., Velasco, P., Hirakawa, S., Kunstfeld, R., Brown, L. F., et al. (2004). VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB Journal, 18, 1111–1113.

    PubMed  CAS  Google Scholar 

  • Huggenberger, R., Ullmann, S., Proulx, S. T., Pytowski, B., Alitalo, K., & Detmar, M. (2010). Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. Journal of Experimental Medicine, 207, 2255–2269.

    Article  PubMed  CAS  Google Scholar 

  • Jackowski, S., Janusch, M., Fiedler, E., Marsch, W. C., Ulbrich, E. J., Gaisbauer, G., et al. (2007). Radiogenic lymphangiogenesis in the skin. American Journal of Pathology, 171, 338–348.

    Article  PubMed  Google Scholar 

  • Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., et al. (1997). Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO Journal, 16, 3898–3911.

    Article  PubMed  CAS  Google Scholar 

  • Kahnert, A., Hopken, U. E., Stein, M., Bandermann, S., Lipp, M., & Kaufmann, S. H. (2007). Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. Journal of Infectious Diseases, 195, 46–54.

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., et al. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunology, 5, 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Karpanen, T., Wirzenius, M., Makinen, T., Veikkola, T., Haisma, H. J., Achen, M. G., et al. (2006). Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. American Journal of Pathology, 169, 708–718.

    Article  PubMed  CAS  Google Scholar 

  • Komarova, Y., & Malik, A. B. (2010). Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annual Review of Physiology, 72, 463–493.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer, S., Dethlefsen, I., Hagner-Benes, S., Marsh, L. M., Garn, H., & Konig, P. (2013). Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 as a marker. PLoS One, 8, e55201.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni, R. M., Herman, A., Ikegami, M., Greenberg, J. M., & Akeson, A. L. (2011). Lymphatic ontogeny and effect of hypoplasia in developing lung. Mechanisms of Development, 128, 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Leak, L. V., & Burke, J. F. (1966). Fine structure of the lymphatic capillary and the adjoining connective tissue area. The American Journal of Anatomy, 118, 785–809.

    Article  PubMed  CAS  Google Scholar 

  • Leak, L. V., & Burke, J. F. (1968). Ultrastructural studies on the lymphatic anchoring filaments. Journal of Cell Biology, 36, 129–149.

    Article  Google Scholar 

  • Lindsey, J. R., & Cassell, H. (1973). Experimental Mycoplasma pulmonis infection in pathogen-free mice. Models for studying mycoplasmosis of the respiratory tract. American Journal of Pathology, 72, 63–90.

    PubMed  CAS  Google Scholar 

  • Lohela, M., Bry, M., Tammela, T., & Alitalo, K. (2009). VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Current Opinion in Cell Biology, 21, 154–165.

    Article  PubMed  CAS  Google Scholar 

  • Lohela, M., Helotera, H., Haiko, P., Dumont, D. J., & Alitalo, K. (2008). Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. American Journal of Pathology, 173, 1891–1901.

    Article  PubMed  CAS  Google Scholar 

  • Makinen, T., Jussila, L., Veikkola, T., Karpanen, T., Kettunen, M. I., Pulkkanen, K. J., et al. (2001). Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Medicine, 7, 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, R. V., Mark, E. J., & Kradin, R. L. (2008). Organizing pneumonia and pulmonary lymphatic architecture in diffuse alveolar damage. Human Pathology, 39, 1234–1238.

    Article  PubMed  Google Scholar 

  • McDonald, D. M. (1994). Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. American Journal of Physiology, 266, L61–L83.

    PubMed  CAS  Google Scholar 

  • McDonald, D. M. (2001). Angiogenesis and remodeling of airway vasculature in chronic inflammation. American Journal of Respiratory and Critical Care Medicine, 164, S39–S45.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, D. M. (2008). Angiogenesis and vascular remodeling in inflammation and cancer: biology and architecture of the vasculature. In W. D. Figg & J. Folkman (Eds.), Angiogenesis: an integrative approach from science to medicine (pp. 17–33). New York: Springer. Chapter 2.

    Google Scholar 

  • McDonald, D. M., Yao, L. C., & Baluk, P. (2011). Dynamics of airway blood vessels and lymphatics: Lessons from development and inflammation. Proceedings of the American Thoracic Society, 8, 504–507.

    Article  PubMed  Google Scholar 

  • Mori, M., Andersson, C. K., Svedberg, K. A., Glader, P., Bergqvist, A., Shikhagaie, M., et al. (2013). Appearance of remodelled and dendritic cell-rich alveolar-lymphoid interfaces provides a structural basis for increased alveolar antigen uptake in chronic obstructive pulmonary disease. Thorax, 68(6), 521–531.

    Article  PubMed  Google Scholar 

  • Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nature Medicine, 10, 927–934.

    Article  PubMed  CAS  Google Scholar 

  • Mumprecht, V., Roudnicky, F., & Detmar, M. (2012). Inflammation-induced lymph node lymphangiogenesis is reversible. American Journal of Pathology, 180, 874–879.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. A., Vasile, E., Feng, D., Sundberg, C., Brown, L. F., Detmar, M. J., et al. (2002). Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. Journal of Experimental Medicine, 196, 1497–1506.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, I., Bahram, F., Li, X., Gualandi, L., Koch, S., Jarvius, M., et al. (2010). VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO Journal, 29, 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  • Parra, E. R., Araujo, C. A., Lombardi, J. G., Ab’Saber, A. M., Carvalho, C. R., Kairalla, R. A., & Capelozzi, V. L. (2012). Lymphatic fluctuation in the parenchymal remodeling stage of acute interstitial pneumonia, organizing pneumonia, nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis. Brazilian Journal of Medical and Biological Research, 45, 466–472.

    Article  PubMed  CAS  Google Scholar 

  • Pflicke, H., & Sixt, M. (2009). Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. Journal of Experimental Medicine, 206, 2925–2935.

    Article  PubMed  CAS  Google Scholar 

  • Pullinger, B., & Florey, H. W. (1937). Proliferation of lymphatics in inflammation. Journal of Pathology and Bacteriology, 45, 157–170.

    Article  Google Scholar 

  • Pytowski, B., Goldman, J., Persaud, K., Wu, Y., Witte, L., Hicklin, D. J., et al. (2005). Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. Journal of the National Cancer Institute, 97, 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Kusser, K., & Randall, T. D. (2007). Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proceedings of the National Academy of Sciences of the United States of America, 104, 10577–10582.

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Schonbein, G. W. (2003). The second valve system in lymphatics. Lymphatic Research and Biology, 1, 25–29. discussion 29–31.

    Article  PubMed  Google Scholar 

  • Schoefl, G. I. (1963). Studies on inflammation. III. Growing capillaries: their structure and permeability. Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 337, 97–141.

    PubMed  CAS  Google Scholar 

  • Szuba, A., Skobe, M., Karkkainen, M. J., Shin, W. S., Beynet, D. P., Rockson, N. B., et al. (2002). Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB Journal, 16, 1985–1987.

    PubMed  CAS  Google Scholar 

  • Tal, O., Lim, H. Y., Gurevich, I., Milo, I., Shipony, Z., Ng, L. G., et al. (2011). DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. Journal of Experimental Medicine, 208, 2141–2153.

    Article  PubMed  CAS  Google Scholar 

  • Trzewik, J., Mallipattu, S. K., Artmann, G. M., Delano, F. A., & Schmid-Schonbein, G. W. (2001). Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB Journal, 15, 1711–1717.

    Article  PubMed  CAS  Google Scholar 

  • Van den Broeck, W., Derore, A., & Simoens, P. (2006). Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. Journal of Immunological Methods, 312, 12–19.

    Article  PubMed  Google Scholar 

  • Whitsett, J. A., & Matsuzaki, Y. (2006). Transcriptional regulation of perinatal lung maturation. Pediatric Clinics of North America, 53, 873–887. viii.

    Article  PubMed  Google Scholar 

  • Wilson, J. W., & Hii, S. (2006). The importance of the airway microvasculature in asthma. Current Opinion in Allergy and Clinical Immunology, 6, 51–55.

    Article  PubMed  Google Scholar 

  • Wirzenius, M., Tammela, T., Uutela, M., He, Y., Odorisio, T., Zambruno, G., et al. (2007). Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. Journal of Experimental Medicine, 204, 1431–1440.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, M., Iwama, N., Date, F., Chiba, R., Ebina, M., Miki, H., et al. (2009). Characterization of lymphangiogenesis in various stages of idiopathic diffuse alveolar damage. Human Pathology, 40, 542–551.

    Article  PubMed  Google Scholar 

  • Yao, L. C., Baluk, P., Feng, J., & McDonald, D. M. (2010). Steroid-resistant lymphatic remodeling in chronically inflamed mouse airways. American Journal of Pathology, 176, 1525–1541.

    Article  PubMed  CAS  Google Scholar 

  • Yao, L. C., Baluk, P., Srinivasan, R. S., Oliver, G., & McDonald, D. M. (2012). Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. American Journal of Pathology, 180, 2561–2575.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the Lymphatic Malformation Institute, grants HL024136 and HL59157 from National Heart, Lung, and Blood Institute of the US National Institutes of Health, and the Leducq Foundation to DMcD, and by a postdoctoral fellowship award from the Lymphatic Research Foundation to LCY. We thank the members of the McDonald laboratory for critical reading of the manuscript and their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald M. McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Yao, LC., McDonald, D.M. (2014). Plasticity of Airway Lymphatics in Development and Disease. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics