Skip to main content

Advertisement

Log in

The chicken chorioallantoic membrane model in biology, medicine and bioengineering

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AA:

Anti-angiogenic

AC:

Anti-cancer

ALA:

Aminolevulinic acid

AM:

Anti-microbial

AMD:

Age-related macular degeneration

BrdU:

Bromodeoxyuridine

CAM:

Chicken chorioallantoic membrane

CNV:

Subfoveal choroidal neovascularization

DDS:

Drug delivery systems

DPPC:

Dipalmitoylphosphatidylcholine

ECs:

Endothelial cells

ECM:

Extracellular matrix

GF:

Growth factor

HGF:

Hepatocyte growth factor

LC:

Langerhans cells

LF:

Lipid factor

MR:

Microbeam radiation

PCV:

Polypoidal choroidal vasculopathy

PDD:

Photodynamic diagnosis

PEG:

Polyethylene glycol

PLGA:

Poly(lactide-co-glycolide)

PpIX:

Protoporphyrin IX

Prox1:

Prospero homeobox protein 1

PS:

Photosensitizer

SMA:

Smooth muscle actin

VDA:

Vascular disrupting agents

VM:

Vasculogenic mimicry

YSM:

Yolk sac membrane

References

  1. Rous P, Murphy JB (1911) Tumor implantations in the developing embryo. J Am Med Assoc 56:741

    Google Scholar 

  2. Murphy JB (1912) Transplantability of malignant tumors to embryos of a foreign species. J Am Med Assoc 59:874

    Google Scholar 

  3. Goodpasture EW, Woodruff AM, Buddingh GJ (1931) The cultivation of vaccine and other viruses in the chorioallantoic membrane of chick embryos. Science 74(1919):371–372

    PubMed  CAS  Google Scholar 

  4. Morrow G, Syverton JT, Stiles WW, Berry GP (1938) The growth of leptospira icterohemorrhagiae on the chorioallantoic membrane of the chick embryo. Science 88(2286):384–385

    PubMed  CAS  Google Scholar 

  5. Moore M (1942) The chorioallantoic membrane of chick embryos and its response to inoculation with some mycobacteria. Am J Pathol 18(5):827–847

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Ribatti D, Vacca A, Roncali L, Dammacco F (2000) The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis. Curr Pharm Biotechnol 1(1):73–82

    PubMed  CAS  Google Scholar 

  7. Ribatti D (2012) Chicken chorioallantoic membrane angiogenesis model. Methods Mol Biol 843:47–57

    PubMed  CAS  Google Scholar 

  8. Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41(2):391–394

    PubMed  CAS  Google Scholar 

  9. Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47(1):31–40

    PubMed  CAS  Google Scholar 

  10. Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M, Iruela-Arispe ML (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274(33):23349–23357

    PubMed  CAS  Google Scholar 

  11. Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    PubMed  CAS  Google Scholar 

  12. Papoutsi M, Tomarev SI, Eichmann A, Prols F, Christ B, Wilting J (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222(2):238–251

    PubMed  CAS  Google Scholar 

  13. Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis. Springer Science & Business Media, Berlin

    Google Scholar 

  14. Dohle DS, Pasa SD, Gustmann S, Laub M, Wissler JH, Jennissen HP, Dunker N (2009) Chick ex ovo culture and ex ovo CAM assay: how it really works. JoVE 33. doi:10.3791/1620

  15. Burnet FM (1933) A virus disease of the canary of the fowl-pox group. J Pathol Bacteriol 37:107–122

    Google Scholar 

  16. Dagg CP, Karnofsky DA, Roddy J (1956) Growth of transplantable human tumors in the chick embryo and hatched chick. Cancer Res 16(7):589–594

    PubMed  CAS  Google Scholar 

  17. Zwilling E (1959) A modified chorioallantoic grafting procedure. Transplant Bull 6(1):115–116

    PubMed  CAS  Google Scholar 

  18. Nowak-Sliwinska P, van Beijnum JR, van Berkel M, van den Bergh H, Griffioen AW (2010) Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis 13(4):281–292

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Nowak-Sliwinska P, Weiss A, Beijnum JR, Wong TJ, Ballini JP, Lovisa B, van den Bergh H, Griffioen AW (2012) Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J Cell Mol Med 16(7):1553–1562

    PubMed  CAS  Google Scholar 

  20. Lange N, Ballini JP, Wagnieres G, van den Bergh H (2001) A new drug-screening procedure for photosensitizing agents used in photodynamic therapy for CNV. Invest Ophthalmol Vis Sci 42(1):38–46

    PubMed  CAS  Google Scholar 

  21. Abe C, Uto Y, Nakae T, Shinmoto Y, Sano K, Nakata H, Teraoka M, Endo Y, Maezawa H, Masunaga S, Nakata E, Hori H (2011) Evaluation of the in vivo radiosensitizing activity of etanidazole using tumor-bearing chick embryo. J Radiat Res 52(2):208–214

    PubMed  CAS  Google Scholar 

  22. Kardamakis D, Hadjimichael C, Ginopoulos P, Papaioannou S (2004) Effects of paclitaxel in combination with ionizing radiation on angiogenesis in the chick embryo chorioallantoic membrane. A radiobiological study. Strahlenther Onkol 180(3):152–156

    PubMed  Google Scholar 

  23. Wilson SM, Chambers AF (2004) Experimental metastasis assays in the chick embryo. Curr Prot Cell B iol Chapter 19:Unit 19 16

  24. Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB (2003) Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 9(3):441–450

    PubMed  CAS  Google Scholar 

  25. Ponce ML, Kleinman HK (2003) The chick chorioallantoic membrane as an in vivo angiogenesis model. Curr Protoc Cell Biol 19.5.1:1–6

  26. Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91

    PubMed  CAS  Google Scholar 

  27. Ausprunk DH, Knighton DR, Folkman J (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38(2):237–248

    PubMed  CAS  Google Scholar 

  28. Kucera P, Burnand MB (1987) Routine teratogenicity test that uses chick embryos in vitro. Teratog Carcinog Mutagen 7(5):427–447

    PubMed  CAS  Google Scholar 

  29. Samkoe KS, Clancy AA, Karotki A, Wilson BC, Cramb DT (2007) Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration. J Biomed Opt 12(3):034025

    PubMed  Google Scholar 

  30. Deryugina EI, Quigley JP (2008) Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol 444:21–41

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Lei Y, Rahim M, Ng Q, Segura T (2011) Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J. Control. Release 153(3):255–261

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Weiss A, van Beijnum JR, Bonvin D, Jichlinski P, Dyson PJ, Griffioen AW, Nowak-Sliwinska P (2014) Low-dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization. J Cell Mol Med 18(3):480–491

    PubMed  CAS  Google Scholar 

  33. Grummer R (2006) Animal models in endometriosis research. Hum Reprod Update 12(5):641–649

    PubMed  Google Scholar 

  34. Valdes TI, Kreutzer D, Moussy F (2002) The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J Biomed Mater Res 62(2):273–282

    PubMed  CAS  Google Scholar 

  35. Valdes TI, Klueh U, Kreutzer D, Moussy F (2003) Ex ova chick chorioallantoic membrane as a novel in vivo model for testing biosensors. J Biomed Mater Res Part A 67(1):215–223

    CAS  Google Scholar 

  36. Ribatti D, Nico B, Vacca A, Roncali L, Burri PH, Djonov V (2001) Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat Rec 264(4):317–324

    PubMed  CAS  Google Scholar 

  37. Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thüsen JH, Twickler MT, Spek CA, Goffin V, Griffioen AW, Borensztajn KS (2012) Functional consequences of prolactin signaling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 16(9):2035–2048

    PubMed  CAS  Google Scholar 

  38. Gagliardi A, Collins DC (1993) Inhibition of angiogenesis by antiestrogens. Cancer Res 53(3):533–535

    PubMed  CAS  Google Scholar 

  39. Adar Y, Stark M, Bram EE, Nowak-Sliwinska P, van den Bergh H, Szewczyk G, Sarna T, Skladanowski A, Griffioen AW, Assaraf YG (2012) Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death Dis 3:e293

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Pipili-Synetos E, Kritikou S, Papadimitriou E, Athanassiadou A, Flordellis C, Maragoudakis ME (2000) Nitric oxide synthase expression, enzyme activity and NO production during angiogenesis in the chick chorioallantoic membrane. Brit J Pharmacol 129(1):207–213

    CAS  Google Scholar 

  41. Clavel CM, Paunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ (2014) Discovery of a highly tumor-selective organometallic ruthenium(II)-arene complex. J Med Chem 57(8):3546–3558

    PubMed  CAS  Google Scholar 

  42. Nowak-Sliwinska P, van Beijnum JR, Casini A, Nazarov AA, Wagnières G, van den Bergh H, Dyson PJ, Griffioen AW (2011) Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J Med Chem 54(11):3895–3902

    PubMed  CAS  Google Scholar 

  43. Nazarov AA, Baquie M, Nowak-Sliwinska P, Zava O, van Beijnum JR, Groessl M, Chisholm DM, Ahmadi Z, McIndoe JS, Griffioen AW, van den Bergh H, Dyson PJ (2013) Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Sci Rep 3:1485

    PubMed  Google Scholar 

  44. Hu GF (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc Nat Acad Sci 95(17):9791–9795

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Nowak-Sliwinska P, Storto M, Cataudella T, Ballini JP, Gatz R, Giorgio M, van den Bergh H, Plyte S, Wagnières G (2012) Angiogenesis inhibition by the maleimide-based small molecule GNX-686. Microvasc Res 83:105–110

    PubMed  CAS  Google Scholar 

  46. van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, Griffioen AW (2013) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 17(32):363–374

    Google Scholar 

  47. Form DM, Auerbach R (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med 172(2):214–218

    PubMed  CAS  Google Scholar 

  48. Chen Z, Milner TE, Srinivas S, Wang X, Malekafzali A, van Gemert MJ, Nelson JS (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121

    PubMed  CAS  Google Scholar 

  49. Tay SL, Heng PW, Chan LW (2012) The CAM-LDPI method: a novel platform for the assessment of drug absorption. J Pharm Pharmacol 64(4):517–529

    PubMed  CAS  Google Scholar 

  50. Liu X, Zhang K, Huang Y, Kang JU (2011) Spectroscopic-speckle variance OCT for microvasculature detection and analysis. Biomed Opt Express 2(11):2995–3009

    PubMed  PubMed Central  Google Scholar 

  51. Debefve E, Pegaz B, van den Bergh H, Wagnieres G, Lange N, Ballini JP (2008) Video monitoring of neovessel occlusion induced by photodynamic therapy with verteporfin (Visudyne), in the CAM model. Angiogenesis 11(3):235–243

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Chambers AF, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84(10):797–803

    PubMed  CAS  Google Scholar 

  53. Hlushchuk R, Ehrbar M, Reichmuth P, Heinimann N, Styp-Rekowska B, Escher R, Baum O, Lienemann P, Makanya A, Keshet E, Djonov V (2011) Decrease in VEGF expression induces intussusceptive vascular pruning. Arterioscler Thromb Vasc Biol 31(12):2836–2844

    PubMed  CAS  Google Scholar 

  54. Chesnick IE, Fowler CB, Mason JT, Potter K (2011) Novel mineral contrast agent for magnetic resonance studies of bone implants grown on a chick chorioallantoic membrane. Magn Reson Imaging 29(9):1244–1254

    PubMed  CAS  Google Scholar 

  55. Warnock G, Turtoi A, Blomme A, Bretin F, Bahri MA, Lemaire C, Libert LC, Seret AE, Luxen A, Castronovo V, Plenevaux AR (2013) In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development. J Nucl Med 54(10):1782–1788

    PubMed  CAS  Google Scholar 

  56. Miller WJ, Kayton ML, Patton A, O’Connor S, He M, Vu H, Baibakov G, Lorang D, Knezevic V, Kohn E, Alexander HR, Stirling D, Payvandi F, Muller GW, Libutti SK (2004) A novel technique for quantifying changes in vascular density, endothelial cell proliferation and protein expression in response to modulators of angiogenesis using the chick chorioallantoic membrane (CAM) assay. J. Transl. Med. 2(1):4

    PubMed  PubMed Central  Google Scholar 

  57. Zeng L, Da X, Gu H, Yang D, Yang S, Xiang L (2007) High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet. Med Phys 34(2):556–563

    PubMed  Google Scholar 

  58. Faez T, Skachkov I, Versluis M, Kooiman K, de Jong N (2012) In vivo characterization of ultrasound contrast agents: microbubble spectroscopy in a chicken embryo. Ultrasound Med Biol 38(9):1608–1617

    PubMed  Google Scholar 

  59. Ford TN, Lim D, Mertz J (2012) Fast optically sectioned fluorescence HiLo endomicroscopy. J Biomed Opt 17(2):021105

    PubMed  PubMed Central  Google Scholar 

  60. Kirchner LM, Schmidt SP, Gruber BS (1996) Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc Res 51(1):2–14

    PubMed  CAS  Google Scholar 

  61. Larger E, Marre M, Corvol P, Gasc JM (2004) Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Diabetes 53(3):752–761

    PubMed  CAS  Google Scholar 

  62. Blacher S, Davy L, Hlushchuk R, Larger E, Lamande N, Burri P, Corvol P, Djonov V, Foidart JM, Noel A (2005) Quantification of angiogenesis in the chicken chorioallantoic membrane (CAM). Image Anal Stereol 24:169–180

    Google Scholar 

  63. Doukas CN, Maglogiannis I, Chatziioannou AA (2008) Computer-supported angiogenesis quantification using image analysis and statistical averaging. IEEE Trans Inf Technol Biomed 12(5):650–657

    PubMed  Google Scholar 

  64. Nowak-Sliwinska P, Ballini J-P, Wagnières G, van den Bergh H (2010) Processing of fluorescence angiograms for the quantification of vascular effects induced by anti-angiogenic agents in the CAM model. Microvasc Res 79(1):21–28

    PubMed  CAS  Google Scholar 

  65. Parsons-Wingerter P, Lwai B, Yang MC, Elliott KE, Milaninia A, Redlitz A, Clark JI, Sage EH (1998) A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc Res 55(3):201–214

    PubMed  CAS  Google Scholar 

  66. Doukas CN, Maglogiannis I, Chatziioannou A, Papapetropoulos A (2006) Automated angiogenesis quantification through advanced image processing techniques. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2345–2348

    PubMed  Google Scholar 

  67. Pyriochou A, Tsigkos S, Vassilakopoulos T, Cottin T, Zhou Z, Gourzoulidou E, Roussos C, Waldmann H, Giannis A, Papapetropoulos A (2007) Anti-angiogenic properties of a sulindac analogue. Brit. J. Pharmacol. 152(8):1207–1214

    CAS  Google Scholar 

  68. Strick DM, Waycaster RL, Montani JP, Gay WJ, Adair TH (1991) Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am J Physiol 260(4 Pt 2):H1385–H1389

    PubMed  CAS  Google Scholar 

  69. Vickerman MB, Keith PA, McKay TL, Gedeon DJ, Watanabe M, Montano M, Karunamuni G, Kaiser PK, Sears JE, Ebrahem Q, Ribita D, Hylton AG, Parsons-Wingerter P (2009) VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat Rec (Hoboken, NJ: 2007) 292(3):320–332

    Google Scholar 

  70. Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, De Vos J, Assou S, Bicknell R, Bikfalvi A, Hagedorn M (2009) Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS ONE 4(11):e7856

    PubMed  PubMed Central  Google Scholar 

  71. Ausprunk DH, Knighton DR, Folkman J (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 79(3):597–618

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, Fletcher WS (1993) Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J Surg Res 55(4):446–450

    PubMed  CAS  Google Scholar 

  73. Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol 130(6):1119–1130

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Tay SL, Heng PW, Chan LW (2012) The chick chorioallantoic membrane imaging method as a platform to evaluate vasoactivity and assess irritancy of compounds. J Pharm Pharmacol 64(8):1128–1137

    PubMed  CAS  Google Scholar 

  75. DeFouw DO, Rizzo VJ, Steinfeld R, Feinberg RN (1989) Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microvasc Res 38(2):136–147

    PubMed  CAS  Google Scholar 

  76. Dimitropoulou C, Malkusch W, Fait E, Maragoudakis ME, Konerding MA (1998) The vascular architecture of the chick chorioallantoic membrane: sequential quantitative evaluation using corrosion casting. Angiogenesis 2(3):255–263

    PubMed  Google Scholar 

  77. Burton GJ, Palmer ME (1989) The chorioallantoic capillary plexus of the chicken egg: a microvascular corrosion casting study. Scanning Microsc 3(2):549–557

    PubMed  CAS  Google Scholar 

  78. Seidlitz E, Korbie D, Marien L, Richardson M, Singh G (2004) Quantification of anti-angiogenesis using the capillaries of the chick chorioallantoic membrane demonstrates that the effect of human angiostatin is age-dependent. Microvasc Res 67(2):105–116

    PubMed  CAS  Google Scholar 

  79. Parsons-Wingerter P, McKay TL, Leontiev D, Vickerman MB, Condrich TK, Dicorleto PE (2006) Lymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splitting. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288(3):233–247

    PubMed  Google Scholar 

  80. Cimpean AM, Seclaman E, Ceausu R, Gaje P, Feflea S, Anghel A, Raica M, Ribatti D (2010) VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature. Clin. Exp. Med. 10(3):169–172

    PubMed  CAS  Google Scholar 

  81. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Develop Biol 188(1):96–109

    PubMed  CAS  Google Scholar 

  82. Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Gene Dev 16(7):773–783

    PubMed  CAS  Google Scholar 

  83. Papoutsi M, Sleeman JP, Wilting J (2001) Interaction of rat tumor cells with blood vessels and lymphatics of the avian chorioallantoic membrane. Microsc Res Tech 55(2):100–107

    PubMed  CAS  Google Scholar 

  84. Holzmann P, Niculescu-Morzsa E, Zwickl H, Halbwirth F, Pichler M, Matzner M, Gottsauner-Wolf F, Nehrer S (2010) Investigation of bone allografts representing different steps of the bone bank procedure using the CAM-model. Altex 27(2):97–103

    PubMed  Google Scholar 

  85. Pink DB, Schulte W, Parseghian MH, Zijlstra A, Lewis JD (2012) Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery. PLoS ONE 7(3):e33760

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Debefve E, Pegaz B, Ballini JP, Konan YN, van den Bergh H (2007) Combination therapy using aspirin-enhanced photodynamic selective drug delivery. Vasc Pharmacol 46(3):171–180

    CAS  Google Scholar 

  87. Rizzo V, DeFouw DO (1997) Microvascular permselectivity in the chick chorioallantoic membrane during endothelial cell senescence. Int J Microcirc Clin Exp 17(2):75–79

    PubMed  CAS  Google Scholar 

  88. Rizzo V, Steinfeld R, Kyriakides C, DeFouw DO (1993) The microvascular unit of the 6-day chick chorioallantoic membrane: a fluorescent confocal microscopic and ultrastructural morphometric analysis of endothelial permselectivity. Microvasc Res 46(3):320–332

    PubMed  CAS  Google Scholar 

  89. van der Horst EH, Frank BT, Chinn L, Coxon A, Li S, Polesso F, Slavin A, Ruefli-Brasse A, Wesche H (2008) The growth factor Midkine antagonizes VEGF signaling in vitro and in vivo. Neoplasia 10(4):340–347

    PubMed  PubMed Central  Google Scholar 

  90. Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W (1995) Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 171(2):399–414

    PubMed  CAS  Google Scholar 

  91. Stieger SM, Caskey CF, Adamson RH, Qin S, Curry FR, Wisner ER, Ferrara KW (2007) Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model. Radiology 243(1):112–121

    PubMed  Google Scholar 

  92. Murphy JB (1913) Transplantability of tissues to the embryo of foreign species : its bearing on questions of tissue specificity and tumor immunity. J Exp Med 17(4):482–493

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Subauste MC, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI (2009) Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastas 26(8):1033–1047

    Google Scholar 

  94. Sys GM, Lapeire L, Stevens N, Favoreel H, Forsyth R, Bracke M, De Wever O (2013) The in ovo CAM-assay as a xenograft model for sarcoma. JoVE 77:e50522

    PubMed  Google Scholar 

  95. Fergelot P, Bernhard JC, Soulet F, Kilarski WW, Leon C, Courtois N, Deminiere C, Herbert JM, Antczak P, Falciani F, Rioux-Leclercq N, Patard JJ, Ferriere JM, Ravaud A, Hagedorn M, Bikfalvi A (2013) The experimental renal cell carcinoma model in the chick embryo. Angiogenesis 16(1):181–194

    PubMed  Google Scholar 

  96. Balke M, Neumann A, Kersting C, Agelopoulos K, Gebert C, Gosheger G, Buerger H, Hagedorn M (2010) Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane. BMC 3:58

    Google Scholar 

  97. Ribatti D, Nico B, Cimpean AM, Raica M, Crivellato E, Ruggieri S, Vacca A (2013) B16-F10 melanoma cells contribute to the new formation of blood vessels in the chick embryo chorioallantoic membrane through vasculogenic mimicry. Clin. Exp. Med. 13(2):143–147

    PubMed  CAS  Google Scholar 

  98. Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, Vacca A (2003) In vivo time-course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane. J Anat 203(3):323–328

    PubMed  PubMed Central  Google Scholar 

  99. Gronau S, Thess B, Riechelmann H, Fischer Y, Schmitt A, Schmitt M (2006) An autologous system for culturing head and neck squamous cell carcinomas for the assessment of cellular therapies on the chorioallantois membrane. Eur Arch Otorhinolaryngol 263(4):308–312

    PubMed  CAS  Google Scholar 

  100. Auerbach R, Kubai L, Sidky Y (1976) Angiogenesis induction by tumors, embryonic tissues, and lymphocytes. Cancer Res 36(9 PT 2):3435–3440

    PubMed  CAS  Google Scholar 

  101. Klagsbrun M, Knighton D, Folkman J (1976) Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36(1):110–114

    PubMed  CAS  Google Scholar 

  102. Marzullo A, Vacca A, Roncali L, Pollice L, Ribatti D (1998) Angiogenesis in hepatocellular carcinoma: an experimental study in the chick embryo chorioallantoic membrane. Int J Oncol 13(1):17–21

    PubMed  CAS  Google Scholar 

  103. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164

    PubMed  CAS  Google Scholar 

  104. Kunzi-Rapp K, Kaskel P, Steiner R, Peter RU, Krahn G (2001) Increased blood levels of human S100 in melanoma chick embryo xenografts circulation. Pigment Cell Res 14(1):9–13

    PubMed  CAS  Google Scholar 

  105. Ismail MS, Torsten U, Dressler C, Diederichs JE, Huske S, Weitzel H, Berlien HP (1999) Photodynamic therapy of malignant ovarian tumors cultivated on CAM. Laser Med. Sci. 14:91–96

    CAS  Google Scholar 

  106. Isachenko V, Mallmann P, Petrunkina AM, Rahimi G, Nawroth F, Hancke K, Felberbaum R, Genze F, Damjanoski I, Isachenko E (2012) Comparison of in vitro- and chorioallantoic membrane (CAM)-culture systems for cryopreserved medulla-contained human ovarian tissue. PLoS ONE 7(3):e32549

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Cimpean AM, Ribatti D, Raica M (2008) The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis 11(4):311–319

    PubMed  Google Scholar 

  108. Isachenko V, Orth I, Isachenko E, Mallmann P, Peters D, Schmidt T, Morgenstern B, Foth D, Hanstein B, Rahimi G (2013) Viability of human ovarian tissue confirmed 5 years after freezing with spontaneous ice-formation by autografting and chorio-allantoic membrane culture. Cryobiology 66(3):233–238

    PubMed  Google Scholar 

  109. Isachenko V, Isachenko E, Mallmann P, Rahimi G (2013) Increasing follicular and stromal cell proliferation in cryopreserved human ovarian tissue after long-term precooling prior to freezing: in vitro versus chorioallantoic membrane (CAM) xenotransplantation. Cell Transplant 22(11):2053–2061

    PubMed  Google Scholar 

  110. Deryugina EI, Zijlstra A, Partridge JJ, Kupriyanova TA, Madsen MA, Papagiannakopoulos T, Quigley JP (2005) Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 65(23):10959–10969

    PubMed  CAS  Google Scholar 

  111. Lokman NA, Elder AS, Ricciardelli C, Oehler MK (2012) Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci 13(8):9959–9970

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Becker J, Covelo-Fernandez A, von Bonin F, Kube D, Wilting J (2012) Specific tumor-stroma interactions of EBV-positive Burkitt’s lymphoma cells in the chick chorioallantoic membrane. Vascular Cell 4(1):3

    PubMed  PubMed Central  Google Scholar 

  113. Lugassy C, Kleinman HK, Vernon SE, Welch DR, Barnhill RL (2007) C16 laminin peptide increases angiotropic extravascular migration of human melanoma cells in a shell-less chick chorioallantoic membrane assay. Brit J Dermatol 157(4):780–782

    CAS  Google Scholar 

  114. van den Bergh H, Ballini JP (2003) Photodynamic therapy: basic principle. In: FFaK S (ed) Lasers in ophthalmology—basic, diagnostic and surgical aspects. Kugler Publications, The Hague, pp 183–195

    Google Scholar 

  115. Weiss A, van den Bergh H, Griffioen AW, Nowak-Sliwinska P (1826) Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. BBA Rev Cancer 1:53–70

    Google Scholar 

  116. Lim SH, Nowak-Sliwinska P, Kamarulzaman FA, van den Bergh H, Wagnieres G, Lee HB (2010) The neovessel occlusion efficacy of 15-hydroxypurpurin-7-lactone dimethyl ester induced with photodynamic therapy. Photochem Photobiol 86(2):397–402

    PubMed  CAS  Google Scholar 

  117. Pegaz B, Debefve E, Ballini JP, Wagnieres G, Spaniol S, Albrecht V, Scheglmann DV, Nifantiev NE, van den Bergh H, Konan-Kouakou YN (2006) Photothrombic activity of m-THPC-loaded liposomal formulations: pre-clinical assessment on chick chorioallantoic membrane model. Eur J Pharm Sci 28(1–2):134–140

    PubMed  CAS  Google Scholar 

  118. Pegaz B, Debefve E, Borle F, Ballini JP, Wagnieres G, Spaniol S, Albrecht V, Scheglmann D, Nifantiev NE, van den Bergh H, Konan YN (2005) Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels. Photochem Photobiol 81(6):1505–1510

    PubMed  CAS  Google Scholar 

  119. Olivo M, Chin W (2006) Perylenequinones in photodynamic therapy: cellular versus vascular response. J Environ Pathol Toxicol Oncol 25(1–2):223–237

    PubMed  CAS  Google Scholar 

  120. Hammer-Wilson MJ, Cao D, Kimel S, Berns MW (2002) Photodynamic parameters in the chick chorioallantoic membrane (CAM) bioassay for photosensitizers administered intraperitoneally (IP) into the chick embryo. Photochem Photobiol Sci 1(9):721–728

    PubMed  CAS  Google Scholar 

  121. Piffaretti F, Novello AM, Kumar RS, Forte E, Paulou C, Nowak-Sliwinska P, van den Bergh H, Wagnieres G (2012) Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy. J Biomed Opt 17(11):115007

    PubMed  Google Scholar 

  122. Pegaz B, Debefve E, Borle F, Ballini JP, van den Bergh H, Kouakou-Konan YN (2005) Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study. J Photochem Photobiol, B 80(1):19–27

    CAS  Google Scholar 

  123. Gottfried V, Davidi R, Averguj C, Kimel S (1995) In vivo damage to chorioallantoic membrane blood vessels by porphycene-induced photodynamic therapy. J Photochem Photobiol, B 30(2–3):115–121

    CAS  Google Scholar 

  124. Saw CL, Olivo M, Soo KC, Heng PW (2006) Delivery of hypericin for photodynamic applications. Cancer Lett 241(1):23–30

    PubMed  CAS  Google Scholar 

  125. Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen TM, Ponzoni M (2006) Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 66(20):10073–10082

    PubMed  CAS  Google Scholar 

  126. Knoll A, Schmidt S, Chapman M, Wiley D, Bulgrin J, Blank J, Kirchner L (1999) A comparison of two controlled-release delivery systems for the delivery of amiloride to control angiogenesis. Microvasc Res 58(1):1–9

    PubMed  CAS  Google Scholar 

  127. Wacker BK, Scott EA, Kaneda MM, Alford SK, Elbert DL (2006) Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules 7(4):1335–1343

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Steffens GC, Yao C, Prevel P, Markowicz M, Schenck P, Noah EM, Pallua N (2004) Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng 10(9–10):1502–1509

    PubMed  CAS  Google Scholar 

  129. Chin WW, Lau WK, Bhuvaneswari R, Heng PW, Olivo M (2007) Chlorin e6-polyvinylpyrrolidone as a fluorescent marker for fluorescence diagnosis of human bladder cancer implanted on the chick chorioallantoic membrane model. Cancer Lett 245(1–2):127–133

    PubMed  CAS  Google Scholar 

  130. Pegaz B, Debefve E, Ballini JP, Konan-Kouakou YN, van den Bergh H (2006) Effect of nanoparticle size on the extravasation and the photothrombic activity of meso(p-tetracarboxyphenyl)porphyrin. J Photochem Photobiol, B 85(3):216–222

    CAS  Google Scholar 

  131. Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, Davis FB, Davis PJ, Mousa SA (2009) Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res 29(10):3825–3831

    PubMed  CAS  Google Scholar 

  132. Howl J, Matou-Nasri S, West DC, Farquhar M, Slaninova J, Ostenson CG, Zorko M, Ostlund P, Kumar S, Langel U, McKeating J, Jones S (2012) Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell Mol Life Sci 69(17):2951–2966

    PubMed  CAS  Google Scholar 

  133. Burt HM, Jackson JK, Bains SK, Liggins RT, Oktaba AM, Arsenault AL, Hunter WL (1995) Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d, l-lactic acid). Cancer Lett 88(1):73–79

    PubMed  CAS  Google Scholar 

  134. Murray J, Brown L, Langer R (1984) Controlled release of microquantities of macromolecules. Cancer Drug Deliv 1(2):119–123

    PubMed  CAS  Google Scholar 

  135. Wutzler P, Sauerbrei A, Hartl A, Reimer K (2003) Comparative testing of liposomal and aqueous formulations of povidone-iodine for their angioirritative potential at the chorioallantoic membrane of ex ovo cultivated chick embryos. Dermatology 207(1):43–47

    PubMed  CAS  Google Scholar 

  136. Kanczler JM, Barry J, Ginty P, Howdle SM, Shakesheff KM, Oreffo RO (2007) Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem Biophys Res Commun 352(1):135–141

    PubMed  CAS  Google Scholar 

  137. Wong C, Inman E, Spaethe R, Helgerson S (2003) Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost 89(3):573–582

    PubMed  CAS  Google Scholar 

  138. Jain K, Jain NK (2014) Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J Nanosci Nanotechnol 14(7):5075–5087

    PubMed  CAS  Google Scholar 

  139. Klueh U, Dorsky DI, Kreutzer DL (2005) Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials 26(10):1155–1163

    PubMed  CAS  Google Scholar 

  140. Madsen SJ, Sun CH, Tromberg BJ, Wallace VP, Hirschberg H (2000) Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochem Photobiol 72(1):128–134

    PubMed  CAS  Google Scholar 

  141. Debefve E, Pegaz B, Ballini JP, van den Bergh H (2009) Combination therapy using verteporfin and ranibizumab; optimizing the timing in the CAM model. Photochem Photobiol 85(6):1400–1408

    PubMed  CAS  Google Scholar 

  142. Zuluaga MF, Mailhos C, Robinson G, Shima DT, Gurny R, Lange N (2007) Synergies of VEGF inhibition and photodynamic therapy in the treatment of age-related macular degeneration. Invest Ophthalmol Vis Sci 48(4):1767–1772

    PubMed  Google Scholar 

  143. Seymour RS, Wagner-Amos K (2008) Non-invasive measurement of oxygen partial pressure, lateral diffusion and chorioallantoic blood flow under the avian eggshell. Comp Biochem Physiol A: Mol Integr Physiol 150(2):258–264

    Google Scholar 

  144. Huntosova V, Gay S, Nowak-Sliwinska P, Rajendran SK, Zellweger M, van den Bergh H, Wagnieres G (2014) In vivo measurement of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate. J Biomed Opt 19(7):77004

    PubMed  Google Scholar 

  145. Debefve E, Cheng C, Schaefer SC, Yan H, Ballini JP, van den Bergh H, Lehr HA, Ruffieux C, Ris HB, Krueger T (2010) Photodynamic therapy induces selective extravasation of macromolecules: insights using intravital microscopy. J Photochem Photobiol B 98(1):69–76

    PubMed  CAS  Google Scholar 

  146. Wagnières G, Jichlinski P, Lange N, Kucera P, van den Bergh H (2013) From bench to bedside – the Hexvix® story. In: S. HMaS (ed) Handbook of Photomedicine. Taylor & Francis

  147. Malik E, Meyhofer-Malik A, Berg C, Bohm W, Kunzi-Rapp K, Diedrich K, Ruck A (2000) Fluorescence diagnosis of endometriosis on the chorioallantoic membrane using 5-aminolaevulinic acid. Hum Reprod 15(3):584–588

    PubMed  CAS  Google Scholar 

  148. Saw CL, Olivo M, Chin WW, Soo KC, Heng PW (2007) Superiority of N-methyl pyrrolidone over albumin with hypericin for fluorescence diagnosis of human bladder cancer cells implanted in the chick chorioallantoic membrane model. J Photochem Photobiol, B 86(3):207–218

    CAS  Google Scholar 

  149. Mondon K, Zeisser-Labouebe M, Gurny R, Moller M (2011) MPEG-hexPLA micelles as novel carriers for hypericin, a fluorescent marker for use in cancer diagnostics. Photochem Photobiol 87(2):399–407

    PubMed  CAS  Google Scholar 

  150. Rees CJ, Allen J, Postma GN, Belafsky PC (2010) Effects of Gold laser on the avian chorioallantoic membrane. Ann Otol Rhinol Laryngol 119(1):50–53

    PubMed  Google Scholar 

  151. Broadhurst MS, Akst LM, Burns JA, Kobler JB, Heaton JT, Anderson RR, Zeitels SM (2007) Effects of 532 nm pulsed-KTP laser parameters on vessel ablation in the avian chorioallantoic membrane: implications for vocal fold mucosa. Laryngoscope 117(2):220–225

    PubMed  Google Scholar 

  152. Polytarchou C, Kardamakis D, Katsoris P, Papadimitriou E (2006) Antioxidants modify the effect of X rays on blood vessels. Anticancer Res 26(4B):3043–3047

    PubMed  CAS  Google Scholar 

  153. Giannopoulou E, Katsoris P, Parthymou A, Kardamakis D, Papadimitriou E (2002) Amifostine protects blood vessels from the effects of ionizing radiation. Anticancer Res 22(5):2821–2826

    PubMed  CAS  Google Scholar 

  154. Giannopoulou E, Katsoris P, Hatziapostolou M, Kardamakis D, Kotsaki E, Polytarchou C, Parthymou A, Papaioannou S, Papadimitriou E (2001) X-rays modulate extracellular matrix in vivo. Int J Cancer 94(5):690–698

    PubMed  CAS  Google Scholar 

  155. Sabatasso S, Laissue JA, Hlushchuk R, Graber W, Bravin A, Brauer-Krisch E, Corde S, Blattmann H, Gruber G, Djonov V (2011) Microbeam radiation-induced tissue damage depends on the stage of vascular maturation. Int J Radiat Oncol Biol Phys 80(5):1522–1532

    PubMed  Google Scholar 

  156. Gorski DH, Mauceri HJ, Salloum RM, Halpern A, Seetharam S, Weichselbaum RR (2003) Prolonged treatment with angiostatin reduces metastatic burden during radiation therapy. Cancer Res 63(2):308–311

    PubMed  CAS  Google Scholar 

  157. Parthymou A, Kardamakis D, Pavlopoulos I, Papadimitriou E (2004) Irradiated C6 glioma cells induce angiogenesis in vivo and activate endothelial cells in vitro. Int J Cancer 110(6):807–814

    PubMed  CAS  Google Scholar 

  158. Hatjikondi O, Ravazoula P, Kardamakis D, Dimopoulos J, Papaioannou S (1996) In vivo experimental evidence that the nitric oxide pathway is involved in the X-ray-induced antiangiogenicity. Br J Cancer 74(12):1916–1923

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Hadjimichael C, Kardamakis D, Papaioannou S (2005) Irradiation dose-response effects on angiogenesis and involvement of nitric oxide. Anticancer Res 25(2A):1059–1065

    PubMed  CAS  Google Scholar 

  160. Kanthou C, Tozer GM (2009) Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Pathol 90(3):284–294

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM (2001) Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res 21(1A):93–102

    PubMed  CAS  Google Scholar 

  162. Mahal K, Resch M, Ficner R, Schobert R, Biersack B, Mueller T (2014) Effects of the tumor-vasculature-disrupting agent verubulin and two heteroaryl analogues on cancer cells, endothelial cells, and blood vessels. ChemMedChem 9(4):847–854

    PubMed  CAS  Google Scholar 

  163. Ren X, Dai M, Lin LP, Li PK, Ding J (2009) Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent. Brit J Pharmacol 156(8):1228–1238

    CAS  Google Scholar 

  164. Petitclerc E, Deschesnes RG, Cote MF, Marquis C, Janvier R, Lacroix J, Miot-Noirault E, Legault J, Mounetou E, Madelmont JC, R CG (2004) Antiangiogenic and antitumoral activity of phenyl-3-(2-chloroethyl)ureas: a class of soft alkylating agents disrupting microtubules that are unaffected by cell adhesion-mediated drug resistance. Cancer Res 64(13):4654–4663

    PubMed  CAS  Google Scholar 

  165. Jiang Z, Wu M, Miao J, Duan H, Zhang S, Chen M, Sun L, Wang Y, Zhang X, Zhu X, Zhang L (2013) Deoxypodophyllotoxin exerts both anti-angiogenic and vascular disrupting effects. Int J Biochem Cell Biol 45(8):1710–1719

    PubMed  CAS  Google Scholar 

  166. Ribatti D, Guidolin D, Conconi MT, Nico B, Baiguera S, Parnigotto PP, Vacca A, Nussdorfer GG (2003) Vinblastine inhibits the angiogenic response induced by adrenomedullin in vitro and in vivo. Oncogene 22(41):6458–6461

    PubMed  CAS  Google Scholar 

  167. Muenzner JK, Biersack B, Kalie H, Andronache IC, Kaps L, Schuppan D, Sasse F, Schobert R (2014) Gold(I) biscarbene complexes derived from vascular-disrupting combretastatin A-4 address different targets and show antimetastatic potential. ChemMedChem 9(6):1195–1204

    PubMed  CAS  Google Scholar 

  168. Vargas A, Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliver Rev 59(11):1162–1176

    CAS  Google Scholar 

  169. Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94(8):1124–1132

    PubMed  CAS  Google Scholar 

  170. Vargas A, Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliver Rev 59(11):1162–1176

    CAS  Google Scholar 

  171. Ismail MS, Torsten U, Dressler C, Diederichs JE, Huske S, Weitzel H, Berlien HP (1999) Photodynamic therapy of malignant ovarian tumours cultivated on CAM. Lasers Med Sci 14(2):91–96

    PubMed  CAS  Google Scholar 

  172. Romanoff AL (1960) The avian embryo: structural and functional development. McMillan, New York

    Google Scholar 

  173. Ling TY, Liu YL, Huang YK, Gu SY, Chen HK, Ho CC, Tsao PN, Tung YC, Chen HW, Cheng CH, Lin KH, Lin FH (2014) Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—microbubble scaffold. Biomaterials 35(22):5660–5669

    PubMed  CAS  Google Scholar 

  174. Noiman T, Buzhor E, Metsuyanim S, Harari-Steinberg O, Morgenshtern C, Dekel B, Goldstein RS (2011) A rapid in vivo assay system for analyzing the organogenetic capacity of human kidney cells. Organogenesis 7(2):140–144

    PubMed  PubMed Central  Google Scholar 

  175. Klueh U, Dorsky DI, Moussy F, Kreutzer DL (2003) Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants. J Biomed Mater Res Part A 67(3):838–843

    Google Scholar 

  176. Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, Martens W, Lambrichts I (2013) Angiogenic properties of human dental pulp stem cells. PLoS ONE 8(8):e71104

    PubMed  CAS  PubMed Central  Google Scholar 

  177. 404: Acute Dermal Irritation/Corrosion (2012). In: OECD Guideline for the Testing of Chemicals OECD Publishing

  178. Scheel J, Heppenheimer A, Lehringer E, Kreutz J, Poth A, Ammann H, Reisinger K, Banduhn N (2011) Classification and labeling of industrial products with extreme pH by making use of in vitro methods for the assessment of skin and eye irritation and corrosion in a weight of evidence approach. Toxicol in Vitro 25(7):1435–1447

    PubMed  CAS  Google Scholar 

  179. Kunzi-Rapp K, Ruck A, Kaufmann R (1999) Characterization of the chick chorioallantoic membrane model as a short-term in vivo system for human skin. Arch Dermatol Res 291(5):290–295

    PubMed  CAS  Google Scholar 

  180. Slodownik D, Grinberg I, Spira RM, Skornik Y, Goldstein RS (2009) The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens. Expl Dermatol 18(4):409–413

    CAS  Google Scholar 

  181. Li J, Tripathi RC, Tripathi BJ (2008) Drug-induced ocular disorders. Drug Saf 31(2):127–141

    PubMed  Google Scholar 

  182. Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36(1):49–62

    PubMed  CAS  Google Scholar 

  183. Saw CL, Heng PW, Liew CV (2008) Chick chorioallantoic membrane as an in situ biological membrane for pharmaceutical formulation development: a review. Drug Dev Ind Pharm 34(11):1168–1177

    PubMed  CAS  Google Scholar 

  184. Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM (2006) W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J. Control. Release 111(1–2):145–152

    PubMed  CAS  Google Scholar 

  185. Luepke NP (1985) Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem Toxicol 23(2):287–291

    PubMed  CAS  Google Scholar 

  186. Barile FA (2010) Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods 61(2):136–145

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Abdelkader H, Ismail S, Hussein A, Wu Z, Al-Kassas R, Alany RG (2012) Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen’s egg chorioallantoic membrane and excised bovine cornea models. Int J Pharm 432(1–2):1–10

    PubMed  CAS  Google Scholar 

  188. Debbasch C, Ebenhahn C, Dami N, Pericoi M, Van den Berghe C, Cottin M, Nohynek GJ (2005) Eye irritation of low-irritant cosmetic formulations: correlation of in vitro results with clinical data and product composition. Food Chem Toxicol 43(1):155–165

    PubMed  CAS  Google Scholar 

  189. Hagino S, Kinoshita S, Tani N, Nakamura T, Ono N, Konishi K, Iimura H, Kojima H, Ohno Y (1999) Interlaboratory validation of in vitro eye irritation tests for cosmetic ingredients. (2) chorioallantoic membrane (CAM) test. Toxicol Vitro 13(1):99–113

    CAS  Google Scholar 

  190. Leng T, Miller JM, Bilbao KV, Palanker DV, Huie P, Blumenkranz MS (2004) The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retina 24(3):427–434

    PubMed  Google Scholar 

  191. Guttman Krader C, Laudererdale F (2013) New innovations. Eurotimes 18(3):34

    Google Scholar 

  192. Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pane S, Framme C, Nelson BJ (2013) Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 54(4):2853–2863

    PubMed  Google Scholar 

  193. Murphy JB (1916) The effect of adult chicken organ grafts on the chick embryo. J Exp Med 24(1):1–5

    PubMed  CAS  PubMed Central  Google Scholar 

  194. Chiba A, Yui C, Hirano S (2010) Liver reconstruction on the chorioallantoic membrane of the chick embryo. Arch Histol Cytol 73(1):45–53

    PubMed  Google Scholar 

  195. Maas JW, Le Noble FA, Dunselman GA, de Goeij AF, Struyker Boudier HA, Evers JL (1999) The chick embryo chorioallantoic membrane as a model to investigate the angiogenic properties of human endometrium. Gynecol Obstet Invest 48(2):108–112

    PubMed  CAS  Google Scholar 

  196. Bertossi M, Virgintino D, Coltey P, Errede M, Mancini L, Roncali L (1999) Angiogenesis and endothelium phenotype expression in embryonic adrenal gland and cerebellum grafted onto chorioallantoic membrane. Angiogenesis 3(4):305–315

    PubMed  CAS  Google Scholar 

  197. Katoh M, Nakada K, Miyazaki JI (2001) Liver regeneration on chicken chorioallantoic membrane. Cells Tissues Organs 169(2):125–133

    PubMed  CAS  Google Scholar 

  198. Lemon G, Howard D, Tomlinson MJ, Buttery LD, Rose FR, Waters SL, King JR (2009) Mathematical modelling of tissue-engineered angiogenesis. Math Biosci 221(2):101–120

    PubMed  CAS  Google Scholar 

  199. Eugenin J, Eyzaguirre C (2005) Electrophysiological properties of rat nodose ganglion neurons co-transplanted with carotid bodies into the chick chorioallantoic membrane. Biol Res 38(4):329–334

    PubMed  Google Scholar 

  200. Yang XB, Whitaker MJ, Sebald W, Clarke N, Howdle SM, Shakesheff KM, Oreffo RO (2004) Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng 10(7–8):1037–1045

    PubMed  CAS  Google Scholar 

  201. Vargas GE, Mesones RV, Bretcanu O, Lopez JM, Boccaccini AR, Gorustovich A (2009) Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos. Acta Biomater 5(1):374–380

    PubMed  CAS  Google Scholar 

  202. Buschmann J, Welti M, Hemmi S, Neuenschwander P, Baltes C, Giovanoli P, Rudin M, Calcagni M (2011) Three-dimensional co-cultures of osteoblasts and endothelial cells in DegraPol foam: histological and high-field magnetic resonance imaging analyses of pre-engineered capillary networks in bone grafts. Tissue Eng Part A 17(3–4):291–299

    PubMed  CAS  Google Scholar 

  203. Navarro M, DeRuiter MC, Carretero A, Ruberte J (2003) Microvascular assembly and cell invasion in chick mesonephros grafted onto chorioallantoic membrane. J Anat 202(2):213–225

    PubMed  PubMed Central  Google Scholar 

  204. Ko HC, Milthorpe BK, McFarland CD (2007) Engineering thick tissues-the vascularisation problem. Eur Cell Mater 14:1–18 discussion 18–19

    PubMed  CAS  Google Scholar 

  205. Verhoelst E, De Ketelaere B, Bruggeman V, Villamor E, Decuypere E, De Baerdemaeker J (2011) Development of a fast, objective, quantitative methodology to monitor angiogenesis in the chicken chorioallantoic membrane during development. Int J Dev Biol 55(1):85–92

    PubMed  Google Scholar 

  206. Verhoelst E, De Ketelaere B, Decuypere E, De Baerdemaeker J (2011) The effect of early prenatal hypercapnia on the vascular network in the chorioallantoic membrane of the chicken embryo. Biotechnol Progr 27(2):562–570

    CAS  Google Scholar 

  207. Warren CM, Ziyad S, Briot A, Der A, Iruela-Arispe ML (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7 (307):ra1

  208. Ribatti D, Cruz A, Nico B, Favier J, Vacca A, Corsi P, Roncali L, Dammacco F (2002) In situ hybridization and immunogold localization of vascular endothelial growth factor receptor-2 on the pericytes of the chick chorioallantoic membrane. Cytokine 17(5):262–265

    PubMed  CAS  Google Scholar 

  209. Ribatti D, Nico B, Vacca A, Roncali L (1999) Localization of factor VIII-related antigen in the endothelium of the chick embryo chorioallantoic membrane. Histochem Cell Biol 112(6):447–450

    PubMed  CAS  Google Scholar 

  210. Ribatti D, Nico B, Vacca A, Iurlaro M, Roncali L (1999) Temporal expression of the matrix metalloproteinase MMP-2 correlates with fibronectin immunoreactivity during the development of the vascular system in the chick embryo chorioallantoic membrane. J Anat 195(Pt 1):39–44

    PubMed  PubMed Central  Google Scholar 

  211. Iruela-Arispe ML, Lane TF, Redmond D, Reilly M, Bolender RP, Kavanagh TJ, Sage EH (1995) Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo. Mol Biol Cell 6(3):327–343

    PubMed  CAS  PubMed Central  Google Scholar 

  212. Flamme I, Schulze-Osthoff K, Jacob HJ (1991) Mitogenic activity of chicken chorioallantoic fluid is temporally correlated to vascular growth in the chorioallantoic membrane and related to fibroblast growth factors. Development 111(3):683–690

    PubMed  CAS  Google Scholar 

  213. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128(17):3359–3370

    PubMed  CAS  Google Scholar 

  214. Schughart K, Accart N (2003) Use of adenovirus vectors for functional gene analysis in the chicken chorioallantoic membrane. Biotechniques 34(1):178–183

    PubMed  CAS  Google Scholar 

  215. Forough R, Weylie B, Patel C, Ambrus S, Singh US, Zhu J (2005) Role of AKT/PKB signaling in fibroblast growth factor-1 (FGF-1)-induced angiogenesis in the chicken chorioallantoic membrane (CAM). J Cell Biochem 94(1):109–116

    PubMed  CAS  Google Scholar 

  216. Druyan S, Levi E (2012) Reduced O2 concentration during CAM development—its effect on angiogenesis and gene expression in the broiler embryo CAM. Gene Expr Patterns 12(7–8):236–244

    PubMed  CAS  Google Scholar 

  217. Strick DM, Waycaster RL, Montani JP, Gay WJ, Adair TH (1991) Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am J Physiol 260(4 Pt 2):H1385–H1389

    PubMed  CAS  Google Scholar 

  218. Burton GJ, Palmer ME (1992) Development of the chick chorioallantoic capillary plexus under normoxic and normobaric hypoxic and hyperoxic conditions: a morphometric study. J Exp Zool 262(3):291–298

    PubMed  CAS  Google Scholar 

  219. Baum O, Suter F, Gerber B, Tschanz SA, Buergy R, Blank F, Hlushchuk R, Djonov V (2010) VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation 17(6):447–457

    PubMed  CAS  Google Scholar 

  220. Schlatter P, Konig MF, Karlsson LM, Burri PH (1997) Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res 54(1):65–73

    PubMed  CAS  Google Scholar 

  221. Patan S, Haenni B, Burri PH (1997) Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM). Microvasc Res 53(1):33–52

    PubMed  CAS  Google Scholar 

  222. Chouinard-Pelletier G, Leduc M, Guay D, Coulombe S, Leask RL, Jones EA (2012) Use of inert gas jets to measure the forces required for mechanical gene transfection. Biomed Eng Online 11:67

    PubMed  PubMed Central  Google Scholar 

  223. Lee GS, Filipovic N, Miele LF, Lin M, Simpson DC, Giney B, Konerding MA, Tsuda A, Mentzer SJ (2010) Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane. J Angiogenes Res 2:11

    PubMed  PubMed Central  Google Scholar 

  224. Paulis YW, Soetekouw PM, Verheul HM, Tjan-Heijnen VC (1806) Griffioen AW (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1:18–28

    Google Scholar 

  225. Branum SR, Yamada-Fisher M, Burggren W (2013) Reduced heart rate and cardiac output differentially affect angiogenesis, growth, and development in early chicken embryos (Gallus domesticus). Physiol Biochem Zool 86(3):370–382

    PubMed  CAS  Google Scholar 

  226. le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2):361–375

    PubMed  Google Scholar 

  227. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119(Pt 3):508–518

    PubMed  CAS  Google Scholar 

  228. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90(10):3762–3773

    PubMed  CAS  PubMed Central  Google Scholar 

  229. Moore KA, Polte T, Huang S, Shi B, Alsberg E, Sunday ME, Ingber DE (2005) Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 232(2):268–281

    PubMed  CAS  Google Scholar 

  230. Kilarski WW, Samolov B, Petersson L, Kvanta A, Gerwins P (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15(6):657–664

    PubMed  CAS  Google Scholar 

  231. Mentzler SJ. http://www.mentzerlab.org/images.html

  232. Ruck A, Bohmler A, Steiner R (2005) PDT with TOOKAD® studied in the chorioallantoic membrane of fertilized eggs. Photodiagnosis Photodyn Ther 2(1):79–90

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Valentin Djonov for delivery of the unpublished scanning electron microscopy image (Fig. 10c) and Dr. Steven Menzler for the images shown in Fig. 10a, d.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrycja Nowak-Sliwinska or M. Luisa Iruela-Arispe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak-Sliwinska, P., Segura, T. & Iruela-Arispe, M.L. The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 17, 779–804 (2014). https://doi.org/10.1007/s10456-014-9440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-014-9440-7

Keywords

Navigation