Skip to main content
Log in

Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Objectives

We studied whether plasma levels of angiogenic factors VEGF and placental growth factor (PlGF) in coronary artery disease patients or undergoing cardiac surgery are modified, and whether those factors modulate endothelial progenitor’s angiogenic potential.

Methods and results

A total of 143 patients’ plasmas from two different studies were analyzed (30 coronary artery disease patients, 30 patients with stable angina, coupled with 30 age and sex-matched controls; 53 patients underwent cardiac surgery). Among factors screened, only PlGF was found significantly increased in these pathological populations. PlGF-1 and PlGF-2 were then tested on human endothelial-colony-forming cells (ECFCs). We found that PlGF-1 and PlGF-2 induce VEGFR1 phosphorylation and potentiate ECFCs tubulogenesis in vitro. ECFCs VEGFR1 was further inhibited using a specific small interfering RNA (siRNA) and the chemical compound 4321. We then observed that the VEGFR1-siRNA and the compound 4321 decrease ECFCs tubulogenesis potential in vitro. Finally, we tested the compound 4321 in the preclinical Matrigel®-plug model with C57Bl/6J mice as well as in the murine hindlimb ischemia model. We found that 4321 inhibited the plug vascularization, attested by the hemoglobin content and the VE-Cadherin expression level and that 4321 inhibited the post-ischemic revascularization.

Conclusion

PlGF plasma levels were found increased in cardiovascular patients. Disrupting PlGF/VEGFR1 pathway could modulate ECFC-induced tubulogenesis, the cell type responsible for newly formed vessels in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61(3):1207–1213

    CAS  PubMed  Google Scholar 

  2. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583

    Article  CAS  PubMed  Google Scholar 

  3. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840

    CAS  PubMed  Google Scholar 

  4. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9(4):225–230; discussion 231

    Google Scholar 

  6. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Heeschen C, Dimmeler S, Fichtlscherer S, Hamm CW, Berger J, Simoons ML, Zeiher AM (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291(4):435–441

    Article  CAS  PubMed  Google Scholar 

  8. Smadja D, Gaussem P, Roncal C, Fischer AM, Emmerich J, Darnige L (2010) Arterial and venous thrombosis is associated with different angiogenic cytokine patterns in patients with antiphospholipid syndrome. Lupus 19(7):837–843

    Article  CAS  PubMed  Google Scholar 

  9. Wei SC, Tsao PN, Yu SC, Shun CT, Tsai-Wu JJ, Wu CH, Su YN, Hsieh FJ, Wong JM (2005) Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut 54(5):666–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Parr C, Watkins G, Boulton M, Cai J, Jiang WG (2005) Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur J Cancer 41(18):2819–2827

    Article  CAS  PubMed  Google Scholar 

  11. Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475

    Article  CAS  PubMed  Google Scholar 

  12. Khurana R, Moons L, Shafi S, Luttun A, Collen D, Martin JF, Carmeliet P, Zachary IC (2005) Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111(21):2828–2836

    Article  CAS  PubMed  Google Scholar 

  13. Roncal C, Buysschaert I, Gerdes N, Georgiadou M, Ovchinnikova O, Fischer C, Stassen JM, Moons L, Collen D, De Bock K, Hansson GK, Carmeliet P (2010) Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovasc Res 86(1):29–36

    Article  CAS  PubMed  Google Scholar 

  14. Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, Van Steenkiste C, Tugues S, Rolny C, De Mol M, Dettori D, Hainaud P, Coenegrachts L, Contreres JO, Van Bergen T, Cuervo H, Xiao WH, Le Henaff C, Buysschaert I, Kharabi Masouleh B, Geerts A, Schomber T, Bonnin P, Lambert V, Haustraete J, Zacchigna S, Rakic JM, Jimenez W, Noel A, Giacca M, Colle I, Foidart JM, Tobelem G, Morales-Ruiz M, Vilar J, Maxwell P, Vinores SA, Carmeliet G, Dewerchin M, Claesson-Welsh L, Dupuy E, Van Vlierberghe H, Christofori G, Mazzone M, Detmar M, Collen D, Carmeliet P (2010) Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 141(1):178–190

    Article  PubMed  Google Scholar 

  15. Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P (2007) Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 23(4):223–239

    Article  CAS  PubMed  Google Scholar 

  16. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796(1):33–40

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Silvestre JS, Smadja DM, Levy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93(4):1743–1802

    Google Scholar 

  18. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600

    Article  PubMed  Google Scholar 

  19. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24(2):288–293

    Article  CAS  PubMed  Google Scholar 

  20. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Smadja DM, Bieche I, Silvestre JS, Germain S, Cornet A, Laurendeau I, Duong-Van-Huyen JP, Emmerich J, Vidaud M, Aiach M, Gaussem P (2008) Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 28(12):2137–2143

    Article  CAS  PubMed  Google Scholar 

  22. Smadja DM, Mauge L, Gaussem P, d’Audigier C, Israel-Biet D, Celermajer DS, Bonnet D, Levy M (2011) Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis 14(1):17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Smadja DM, Mauge L, Nunes H, d’Audigier C, Juvin K, Borie R, Carton Z, Bertil S, Blanchard A, Crestani B, Valeyre D, Gaussem P, Israel-Biet D (2013) Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16(1):147–157

    Article  CAS  PubMed  Google Scholar 

  24. Guven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC (2006) The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 48(8):1579–1587

    Article  PubMed  Google Scholar 

  25. Huang L, Hou D, Thompson MA, Baysden SE, Shelley WC, Ingram DA, March KL, Yoder MC (2007) Acute myocardial infarction in swine rapidly and selectively releases highly proliferative endothelial colony forming cells (ECFCs) into circulation. Cell Transplant 16(9):887–897

    Article  PubMed  Google Scholar 

  26. Hoesli SJ, Mead LE, Prater D, Javed MJ, Ingram DA, Denne SC (2010) Endothelial colony-forming cells and mesenchymal stem cells from ECMO circuits of term infants. J Perinatol 30(11):724–730

    Article  CAS  PubMed  Google Scholar 

  27. Smadja DM, Bieche I, Helley D, Laurendeau I, Simonin G, Muller L, Aiach M, Gaussem P (2007) Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med 11(5):1149–1161

    Article  CAS  PubMed  Google Scholar 

  28. Gautier B, Miteva MA, Goncalves V, Huguenot F, Coric P, Bouaziz S, Seijo B, Gaucher JF, Broutin I, Garbay C, Lesnard A, Rault S, Inguimbert N, Villoutreix BO, Vidal M (2011) Targeting the proangiogenic VEGF-VEGFR protein–protein interface with drug-like compounds by in silico and in vitro screening. Chem Biol 18(12):1631–1639

    Article  CAS  PubMed  Google Scholar 

  29. Borgel D, Durand E, Clauser S, Bachelot-Loza C, Peyrard S, Remones V, Aiach M, Lafont A (2009) Plasma Gas6 levels and coronary artery disease. Thromb Haemost 101(1):215–216

    CAS  PubMed  Google Scholar 

  30. Smadja DM, Godier A, Susen S, Packard RR, Fabiani JN, Aiach M, Gaussem P (2009) Endothelial progenitor cells are selectively mobilised immediately after coronary artery bypass grafting or valve surgery. Thromb Haemost 101(5):983–985

    CAS  PubMed  Google Scholar 

  31. Smadja DM, Borgel D, Diehl JL, Gaussem P (2012) Vascular endothelial growth factor, as compared with placental growth factor, is increased in severe sepsis but not in organ failure. J Thromb Haemost 10(5):974–976

    Article  CAS  PubMed  Google Scholar 

  32. Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N (2007) Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands. Anal Biochem 366(1):108–110

    Article  CAS  PubMed  Google Scholar 

  33. Goncalves V, Gautier B, Coric P, Bouaziz S, Lenoir C, Garbay C, Vidal M, Inguimbert N (2007) Rational design, structure, and biological evaluation of cyclic peptides mimicking the vascular endothelial growth factor. J Med Chem 50(21):5135–5146

    Article  CAS  PubMed  Google Scholar 

  34. Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N (2008) Structure-based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. J Pept Sci 14(6):767–772

    Article  CAS  PubMed  Google Scholar 

  35. Smadja DM, Bieche I, Emmerich J, Aiach M, Gaussem P (2006) PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. J Thromb Haemost 4(12):2729–2731

    Article  CAS  PubMed  Google Scholar 

  36. Smadja DM, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P (2005) PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 25(11):2321–2327

    Article  CAS  PubMed  Google Scholar 

  37. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Foubert P, Silvestre JS, Souttou B, Barateau V, Martin C, Ebrahimian TG, Lere-Dean C, Contreres JO, Sulpice E, Levy BI, Plouet J, Tobelem G, Le Ricousse-Roussanne S (2007) PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. J Clin Invest 117(6):1527–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A, Uzan G (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103(7):2577–2584

    Article  CAS  PubMed  Google Scholar 

  40. Dull RO, Yuan J, Chang YS, Tarbell J, Jain RK, Munn LL (2001) Kinetics of placenta growth factor/vascular endothelial growth factor synergy in endothelial hydraulic conductivity and proliferation. Microvasc Res 61(2):203–210

    Article  CAS  PubMed  Google Scholar 

  41. Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J 20(9):1495–1497

    Article  CAS  PubMed  Google Scholar 

  42. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8(8):841–849

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Roncal C, Buysschaert I, Chorianopoulos E, Georgiadou M, Meilhac O, Demol M, Michel JB, Vinckier S, Moons L, Carmeliet P (2008) Beneficial effects of prolonged systemic administration of PlGF on late outcome of post-ischaemic myocardial performance. J Pathol 216(2):236–244

    Article  CAS  PubMed  Google Scholar 

  44. Tamarat R, Silvestre JS, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Levy BI (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164(2):457–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Scholz D, Elsaesser H, Sauer A, Friedrich C, Luttun A, Carmeliet P, Schaper W (2003) Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF) −/− mice. J Mol Cell Cardiol 35(2):177–184

    Article  CAS  PubMed  Google Scholar 

  46. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92(4):378–385

    Article  CAS  PubMed  Google Scholar 

  47. Lenderink T, Heeschen C, Fichtlscherer S, Dimmeler S, Hamm CW, Zeiher AM, Simoons ML, Boersma E (2006) Elevated placental growth factor levels are associated with adverse outcomes at four-year follow-up in patients with acute coronary syndromes. J Am Coll Cardiol 47(2):307–311

    Article  CAS  PubMed  Google Scholar 

  48. Konopka A, Janas J, Piotrowski W, Stepinska J (2013) Concentration of vascular endothelial growth factor in patients with acute coronary syndrome. Cytokine 61(2):664–669

    Article  CAS  PubMed  Google Scholar 

  49. Silvestre JS, Gojova A, Brun V, Potteaux S, Esposito B, Duriez M, Clergue M, Le Ricousse-Roussanne S, Barateau V, Merval R, Groux H, Tobelem G, Levy B, Tedgui A, Mallat Z (2003) Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation 108(23):2839–2842

    Article  PubMed  Google Scholar 

  50. Porto ML, Lima LC, Pereira TM, Nogueira BV, Tonini CL, Campagnaro BP, Meyrelles SS, Vasquez EC (2011) Mononuclear cell therapy attenuates atherosclerosis in apoE KO mice. Lipids Health Dis 10:155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK (2003) Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood 102(4):1515–1524

    Article  CAS  PubMed  Google Scholar 

  52. Smadja DM, Bieche I, Susen S, Mauge L, Laurendeau I, d’Audigier C, Grelac F, Emmerich J, Aiach M, Gaussem P (2009) Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med 13(8B):2534–2546

    Article  PubMed  Google Scholar 

  53. Patel N, Kalra VK (2010) Placenta growth factor-induced early growth response 1 (Egr-1) regulates hypoxia-inducible factor-1alpha (HIF-1alpha) in endothelial cells. J Biol Chem 285(27):20570–20579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim GY, Lee JW, Cho SH, Seo JM, Kim JH (2009) Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 29(6):915–920

    Article  CAS  PubMed  Google Scholar 

  55. Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  56. Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C, Madeddu P (2010) Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res 107(2):283–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ii M, Takeshita K, Ibusuki K, Luedemann C, Wecker A, Eaton E, Thorne T, Asahara T, Liao JK, Losordo DW (2010) Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation 121(9):1104–1112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T (2008) Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation 118(2):157–165

    Article  PubMed  Google Scholar 

  59. Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375(3):287–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Anna Lokajczyk, Isabelle Galy-Fauroux and Berengere Marsac for their technical assistance in ECFCs culture, and IMTCE animal facilities (Paris Descartes University). We are indebted to the nursing services of Hôpital des Diaconnesses (Paris) and Hôpital des Instructions et des Armées de Begin (Saint Mandé) for providing umbilical cord blood samples. This work was supported by research grants from the Leducq TransAtlantic Network of Excellence on Atherothrombosis Research (Grant 04CVD01). Clément d’Audigier and Alexi Yon were supported by research grants from Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Smadja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (PPTX 4017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

d’Audigier, C., Gautier, B., Yon, A. et al. Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential. Angiogenesis 17, 603–616 (2014). https://doi.org/10.1007/s10456-013-9413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9413-2

Keywords

Navigation