Skip to main content
Log in

MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-β pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-β balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McDonald J, Bayrak-Toydemir P, Pyeritz RE (2011) Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med 13(7):607–616. doi:10.1097/GIM.0b013e3182136d32

    Article  PubMed  Google Scholar 

  2. Mahmoud M, Upton PD, Arthur HM (2011) Angiogenesis regulation by TGFbeta signalling: clues from an inherited vascular disease. Biochem Soc Trans 39(6):1659–1666. doi:10.1042/BST20110664

    Article  PubMed  CAS  Google Scholar 

  3. Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16(3):329–343. doi:10.1016/j.devcel.2009.02.012

    Article  PubMed  CAS  Google Scholar 

  4. Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567. doi:10.1016/j.tcb.2010.06.006

    Article  PubMed  CAS  Google Scholar 

  5. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753. doi:10.1093/emboj/21.7.1743

    Article  PubMed  CAS  Google Scholar 

  6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  7. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280(10):9330–9335

    Article  PubMed  CAS  Google Scholar 

  8. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173

    Article  PubMed  CAS  Google Scholar 

  9. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101(1):59–68

    Article  PubMed  CAS  Google Scholar 

  10. Wang S, Olson EN (2009) AngiomiRs-key regulators of angiogenesis. Curr Opin Genet Dev 19(3):205–211. doi:10.1016/j.gde.2009.04.002

    Article  PubMed  CAS  Google Scholar 

  11. Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15

    Article  PubMed  CAS  Google Scholar 

  12. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S (2011) Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23 ~ 27 ~ 24 clusters. Proc Natl Acad Sci USA 108(20):8287–8292. doi:10.1073/pnas.1105254108

    Article  PubMed  CAS  Google Scholar 

  13. Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23(20):4018–4028. doi:10.1038/sj.emboj.7600386

    Article  PubMed  CAS  Google Scholar 

  14. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584. doi:10.1002/jcp.20311

    Article  PubMed  CAS  Google Scholar 

  15. Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277(7):4883–4891. doi:10.1074/jbc.M111023200

    Article  PubMed  CAS  Google Scholar 

  16. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm C, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher A, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684. doi:10.1161/circresaha.109.215566

    Article  PubMed  CAS  Google Scholar 

  17. Mitchell P, Parkin R, Kroh E, Fritz B, Wyman S, Pogosova-Agadjanyan E, Peterson A, Noteboom J, O’Briant K, Allen A, Lin D, Urban N, Drescher C, Knudsen B, Stirewalt D, Gentleman R, Vessella R, Nelson P, Martin D, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518. doi:10.1073/pnas.0804549105

    Article  PubMed  CAS  Google Scholar 

  18. Rong H, Liu T, Yang K, Yang H, Wu D, Liao C, Hong F, Yang H, Wan F, Ye X, Xu D, Zhang X, Chao C, Shen Q (2011) MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 45(1):92–95. doi:10.1016/j.jpsychires.2010.04.028

    Article  PubMed  Google Scholar 

  19. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood L, Galas D (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 106(11):4402–4407. doi:10.1073/pnas.0813371106

    Article  PubMed  CAS  Google Scholar 

  20. Sadick H, Naim R, Gossler U, Hormann K, Riedel F (2005) Angiogenesis in hereditary hemorrhagic telangiectasia: vEGF165 plasma concentration in correlation to the VEGF expression and microvessel density. Int J Mol Med 15(1):15–19

    PubMed  CAS  Google Scholar 

  21. Fernandez LA, Garrido-Martin EM, Sanz-Rodriguez F, Ramirez JR, Morales-Angulo C, Zarrabeitia R, Perez-Molino A, Bernabeu C, Botella LM (2007) Therapeutic action of tranexamic acid in hereditary haemorrhagic telangiectasia (HHT): regulation of ALK-1/endoglin pathway in endothelial cells. Thromb Haemost 97(2):254–262

    Google Scholar 

  22. Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E, Zeiher AM, Kroll J, Fleming I, Dimmeler S (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119(6):1607–1616. doi:10.1182/blood-2011-08-373886

    Article  PubMed  CAS  Google Scholar 

  23. Ojeda-Fernandez L, Barrios L, Rodriguez-Barbero A, Recio-Poveda L, Bernabeu C, Botella LM (2010) Reduced plasma levels of Ang-2 and sEng as novel biomarkers in hereditary hemorrhagic telangiectasia (HHT). Clin Chim Acta 411(7–8):494–499. doi:10.1016/j.cca.2009.12.023

    Article  PubMed  CAS  Google Scholar 

  24. Martinez M, Andriantsitohaina R (2011) Microparticles in angiogenesis: therapeutic potential. Circ Res 109(1):110–119. doi:10.1161/circresaha.110.233049

    Article  PubMed  CAS  Google Scholar 

  25. van den Boorn J, Daßler J, Coch C, Schlee M, Hartmann G (2012) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev. doi:10.1016/j.addr.2012.06.011

    PubMed  Google Scholar 

  26. Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, Castermans K, Malvaux L, Lambert V, Thiry M, Sliwa K, Noel A, Martial JA, Hilfiker-Kleiner D, Struman I (2013) MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Investig 123(5):2143–2154. doi:10.1172/JCI64365

    Article  PubMed  CAS  Google Scholar 

  27. Abdalla SA, Letarte M (2006) Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet 43(2):97–110. doi:10.1136/jmg.2005.030833

    Article  PubMed  CAS  Google Scholar 

  28. Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594

    Article  PubMed  CAS  Google Scholar 

  29. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584. doi:10.1038/nature02006

    Article  PubMed  CAS  Google Scholar 

  30. Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, Di Guglielmo GM, Dejana E, Wrana JL, Letarte M (2005) Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor beta1 with higher affinity receptors and an activated Alk1 pathway. J Biol Chem 280(30):27800–27808. doi:10.1074/jbc.M503471200

    Article  PubMed  CAS  Google Scholar 

  31. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7(20):3112–3118

    Article  PubMed  CAS  Google Scholar 

  32. Wu H, Zhu S, Mo YY (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19(4):439–448. doi:10.1038/cr.2009.18

    Article  PubMed  CAS  Google Scholar 

  33. Albinana V, Bernabeu-Herrero ME, Zarrabeitia R, Bernabeu C, Botella LM (2010) Estrogen therapy for hereditary haemorrhagic telangiectasia (HHT): effects of raloxifene, on endoglin and ALK1 expression in endothelial cells. Thromb Haemost 103(3):525–534. doi:10.1160/TH09-07-0425

    Article  PubMed  CAS  Google Scholar 

  34. Tabruyn SP, Memet S, Ave P, Verhaeghe C, Mayo KH, Struman I, Martial JA, Griffioen AW (2009) NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 8(9):2645–2654. doi:10.1158/1535-7163.MCT-09-0383

    Article  PubMed  CAS  Google Scholar 

  35. Sabatel C, Cornet AM, Tabruyn SP, Malvaux L, Castermans K, Martial JA, Struman I (2010) Sprouty1, a new target of the angiostatic agent 16 K prolactin, negatively regulates angiogenesis. Mol Cancer 9:231. doi:10.1186/1476-4598-9-231

    Article  PubMed  Google Scholar 

  36. Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA, Struman I (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS ONE 6(2):e16979. doi:10.1371/journal.pone.0016979

    Article  PubMed  CAS  Google Scholar 

  37. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17(11):3091–3100. doi:10.1093/emboj/17.11.3091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Michelle Lion, Jean-Yves Carabin and Olivier Nivelles for technical assistance. This study was supported by the University of Liège (Fonds Speciaux), le centre anti-cancéreux (CAC ULg), the FRIA (Fonds pour la Recherche Industrielle et Agricole, Belgium), the FNRS (Fonds National de la Recherche Scientifique, Belgium), the Neoangio program #616476 of the “Service Public de Wallonie”, la “fédération belge contre le cancer”. This work was supported by the Ministerio de Ciencia e Innovacion: Grants SAF2008–01218, SAF2011-23475, SAF2007–61827, and SAF2010–19222, and Fundación Ramón Areces of Spain (Rare and Emergent Diseases). CIBERER is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain. L Ojeda-Fernandez is recipient of a CIBERER contract.

Conflict of interest

The authors declare that thy have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Struman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabruyn, S.P., Hansen, S., Ojeda-Fernández, ML. et al. MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells. Angiogenesis 16, 877–887 (2013). https://doi.org/10.1007/s10456-013-9362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9362-9

Keywords

Navigation