Skip to main content
Log in

Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Growth of the remaining lung after pneumonectomy has been observed in many mammalian species; nonetheless, the pattern and morphology of alveolar angiogenesis during compensatory growth is unknown. Here, we investigated alveolar angiogenesis in a murine model of post-pneumonectomy lung growth. As expected, the volume and weight of the remaining lung returned to near-baseline levels within 21 days of pneumonectomy. The percentage increase in lobar weight was greatest in the cardiac lobe (P < 0.001). Cell cycle flow cytometry demonstrated a peak of lung cell proliferation (12.02 ± 1.48%) 6 days after pneumonectomy. Spatial autocorrelation analysis of the cardiac lobe demonstrated clustering of similar vascular densities (positive autocorrelation) that consistently mapped to subpleural regions of the cardiac lobe. Immunohistochemical staining demonstrated increased cell density and enhanced expression of angiogenesis-related factors VEGFA, and GLUT1 in these subpleural regions. Corrosion casting and scanning electron microscopy 3–6 days after pneumonectomy demonstrated subpleural vessels with angiogenic sprouts. The monopodial sprouts appeared to be randomly oriented along the vessel axis with interbranch distances of 11.4 ± 4.8 μm in the regions of active angiogenesis. Also present within the regions of increased vascular density were frequent “holes” or “pillars” consistent with active intussusceptive angiogenesis. The mean pillar diameter was 4.2 ± 3.8 μm, and the pillars were observed in all regions of active angiogenesis. These findings indicate that the process of alveolar construction involves discrete regions of regenerative growth, particularly in the subpleural regions of the cardiac lobe, characterized by both sprouting and intussusceptive angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2D:

2-Dimensional

3D:

3-Dimensional

CL:

Cardiac lobe

IP:

Intraperitoneal

LWI:

Lung weight index

MLI:

Mean linear intercept

PBS:

Phosphate buffered saline

RLL:

Right lower lobe

RML:

Right middle lobe

RUL:

Right upper lobe

SD:

Standard deviation

SEM:

Scanning electron microscopy

TBW:

Total body weight

References

  1. Addis T (1928) Compensatory hypertrophy of the lung after unilateral pneumectomy. J Exp Med 47:51–56

    Article  PubMed  CAS  Google Scholar 

  2. Tatar-Kiss S, Bardocz S, Kertai P (1984) Changes in l-ornithine decarboxylase activity in regenerating lung lobes. FEBS Lett 175:131–134

    Article  PubMed  CAS  Google Scholar 

  3. Heuer GJ, Dunn GR (1920) Experimental pneumectomy. Bull Johns Hopkins Hosp 31:31–42

    Google Scholar 

  4. Bremer JL (1936) The fate of the remaining lung tissue after lobectomy or pneumonectomy. J Thorac Surg 6:336–343

    Google Scholar 

  5. Sery Z, Keprt E, Obrucnik M (1969) Morphometric analysis of late adaptation of residual lung following pneumonectomy in young and adult rabbits. J Thorac Cardiovasc Surg 57:549–557

    PubMed  CAS  Google Scholar 

  6. McBride JT (1989) Lung-volumes after an increase in lung distension in pneumonectomized ferrets. J Appl Physiol 67:1418–1421

    PubMed  CAS  Google Scholar 

  7. Romanova LK, Leikina EM, Antipova KK (1967) Nucleic acid synthesis and mitotic activity during development of compensatory hypertrophy of lung in rats. Bull Exp Biol Med Ussr 63:303–306

    Article  Google Scholar 

  8. Voswinckel R, Motejl V, Fehrenbach A, Wegmann M, Mehling T, Fehrenbach H, Seeger W (2004) Characterisation of post-pneumonectomy lung growth in adult mice. Eur Respir J 24:524–532

    Article  PubMed  CAS  Google Scholar 

  9. Fehrenbach H, Voswinickel R, Michl V, Mehling T, Fehrenbach A, Seeger W, Nyengaard JR (2008) Neoalveolarisation contributes to compensatory lung growth following pneumonectomy in mice. Eur Respir J 31:515–522

    Article  PubMed  CAS  Google Scholar 

  10. Kumar H, Tawhai MH, Hoffman EA, Lin CL (2009) The effects of geometry on airflow in the acinar region of the human lung. J Biomech 42:1635–1642

    Article  PubMed  Google Scholar 

  11. Sznitman J, Heimsch T, Wildhaber JH, Tsuda A, Rosgen T (2009) Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng Trans Asme 131:1–16

    Article  Google Scholar 

  12. Chang HK, Cheng RT, Farhi LE (1973) Model study of gas-diffusion in alveolar sacs. Respir Physiol 18:386–397

    Article  PubMed  CAS  Google Scholar 

  13. Tippe A, Tsuda A (2000) Recirculating flow in an expanding alveolar model: experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus. J Aerosol Sci 8:979–986

    Article  Google Scholar 

  14. Thompson DW (1945). The forms of tissues, or cell-aggregates. In: On growth and form. Cambridge University Press, New York, pp 465–565

  15. Ciurea D, Gil J (1996) Morphometry of capillaries in three zones of rabbit lungs fixed by vascular perfusion. Anat Rec 244:182–192

    Article  PubMed  CAS  Google Scholar 

  16. Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol 294:L246–L254

    Article  PubMed  CAS  Google Scholar 

  17. Burri PH (1985) Development and growth of the human lung. In: Fishman AP, Fisher AB (eds) Handbook of physiology. The respiratory system. American Physiological Society, Bethesda, pp 1–46

  18. Burri PH (2006) Structural aspects of postnatal lung development—alveolar formation and growth. Biol Neonate 89:313–322

    Article  PubMed  Google Scholar 

  19. Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH (1987) The postnatal-development and growth of the human-lung. I. morphometry. Respir Physiol 67:247–267

    Article  PubMed  CAS  Google Scholar 

  20. Yan X, Bellotto DJ, Foster DJ, Johnson RL, Hagler HK, Estrera AS, Hsia CCW (2004) Retinoic acid induces nonuniform alveolar septal growth after right pneumonectomy. J Appl Physiol 96:1080–1089

    Article  PubMed  CAS  Google Scholar 

  21. Takeda SI, Hsia CCW, Wagner E, Ramanathan M, Estrera AS, Weibel ER (1999) Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. J Appl Physiol 86:1301–1310

    PubMed  CAS  Google Scholar 

  22. Landesberg LJ, Ramalingam R, Lee K, Rosengart TK, Crystal RG (2001) Upregulation of transcription factors in lung in the early phase of postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 281:L1138–L1149

    PubMed  CAS  Google Scholar 

  23. Kaza AK, Kron IL, Leuwerke SM, Tribble CG, Laubach VE (2002) Keratinocyte growth factor enhances post-pneumonectomy lung growth by alveolar proliferation. Circulation 106:I120–I124

    PubMed  Google Scholar 

  24. Sakamaki Y, Matsumoto K, Mizuno S, Miyoshi S, Matsuda H, Nakamura T (2002) Hepatocyte growth factor stimulates proliferation of respiratory epithelial cells during postpneumonectomy compensatory lung growth in mice. Am J Respir Cell Mol Biol 26:525–533

    PubMed  CAS  Google Scholar 

  25. Zhang Q, Bellotto DJ, Ravikumar P, Moe OW, Hogg RT, Hogg DC, Estrera AS, Johnson RL Jr, Hsia CC (2007) Postpneumonectomy lung expansion elicits hypoxia-inducible factor-1alpha signaling. Am J Physiol Lung Cell Mol Physiol 293:L497–L504

    Article  PubMed  CAS  Google Scholar 

  26. Leuwerke SM, Kaza AK, Tribble CG, Kron IL, Laubach VE (2002) Inhibition of compensatory lung growth in endothelial nitric oxide synthase-deficient mice. Am J Physiol Lung Cell Mol Physiol 282:L1272–L1278

    PubMed  CAS  Google Scholar 

  27. Yuan SZ, Hannam V, Belcastro R, Cartel N, Cabacungan J, Wang JX, Diambomba Y, Johnstone L, Post M, Tanswell AK (2002) A role for platelet-derived growth factor-BB in rat postpneumonectomy compensatory lung growth. Pediatr Res 52:25–33

    Article  PubMed  CAS  Google Scholar 

  28. Jancelewicz T, Grethel EJ, Chapin CJ, Clifton MS, Nobuhara KK (2008) Vascular endothelial growth factor isoform and receptor expression during compensatory lung growth. J Surg Res 160:107–113

    Article  PubMed  Google Scholar 

  29. Lin M, Chamoto K, Gibney B, Lee GS, Collings-Simpson D, Houdek J, Konerding MA, Tsuda A, Mentzer SJ (2011) Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth. Respir Res (in press)

  30. Paxson JA, Parkin CD, Iyer LK, Mazan MR, Ingenito EP, Hoffman AM (2009) Global gene expression patterns in the post-pneumonectomy lung of adult mice. Respir Res 10:1–15

    Article  Google Scholar 

  31. Wolff JC, Wilhelm J, Fink L, Seeger W, Voswinckel R (2010) Comparative gene expression profiling of post-natal and post-pneumonectomy lung growth. Eur Respir J 35:655–666

    Article  PubMed  CAS  Google Scholar 

  32. Gibney B, Lee GS, Houdek J, Lin M, Chamoto K, Konerding MA, Tsuda A, Mentzer SJ (2011) Dynamic determination of oxygenation and lung compliance in murine pneumonectomy. Exp Lung Res 37:301–309

    Article  PubMed  CAS  Google Scholar 

  33. Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson M, Gabrielson E (2001) Doublet discrimination in DNA cell-cycle analysis. Cytometry 46:296–306

    Article  PubMed  CAS  Google Scholar 

  34. Marwan N, Kurths J, Thomsen JS, Felsenberg D, Saparin P (2009) Three-dimensional quantification of structures in trabecular bone using measures of complexity. Phys Rev E 79:1–11

    Google Scholar 

  35. Wald MJ, Vasilic B, Saha PK, Wehrli FW (2007) Spatial autocorrelation and mean intercept length analysis of trabecular bone anisotropy applied to in vivo magnetic resonance imaging. Med Phys 34:1110–1120

    Article  PubMed  Google Scholar 

  36. Yilmaz C, Ravikumar P, Dane DM, Bellotto DJ, Johnson RL, Hsia CCW (2009) Noninvasive quantification of heterogeneous lung growth following extensive lung resection by high-resolution computed tomography. J Appl Physiol 107:1569–1578

    Article  PubMed  Google Scholar 

  37. Ravikumar P, Yilmaz C, Dane DM, Johnson RL, Estrera AS, Hsia CCW (2007) Developmental signals do not further accentuate nonuniform postpneumonectomy compensatory lung growth. J Appl Physiol 102:1170–1177

    Article  PubMed  Google Scholar 

  38. Ochs M, Nyengaard LR, Lung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJG (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Google Scholar 

  39. Weibel ER (1963) Geometry and dimensions of alveolar capillary network. In: Morphometry of the human lung. Academic Press, New York, pp 73–89

  40. Campbell H, Tomkeieff SI (1952) Calculation of the internal surface of a lung. Nature 170:117

    Article  Google Scholar 

  41. Schraufnagel DE, Malik R, Goel V, Ohara N, Chang SW (1997) Lung capillary changes in hepatic cirrhosis in rats. Am J Physiol Lung Cell Mol Physiol 272:L139–L147

    CAS  Google Scholar 

  42. Schraufnagel DE (1990) Monocrotaline-induced angiogenesis. Differences in the bronchial and pulmonary vasculature. Am J Pathol 137:1083–1090

    PubMed  CAS  Google Scholar 

  43. Wagner EM, Petrache I, Schofield B, Mitzner W (2006) Pulmonary ischemia induces lung remodeling and angiogenesis. J Appl Physiol 100:587–593

    Article  PubMed  Google Scholar 

  44. Schraufnagel DE, Sekosan M, McGee T, Thakkar MB (1996) Human alveolar capillaries undergo angiogenesis in pulmonary veno-occlusive disease. Eur Respir J 9:346–350

    Article  PubMed  CAS  Google Scholar 

  45. Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164

    Article  PubMed  CAS  Google Scholar 

  46. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    Article  PubMed  CAS  Google Scholar 

  47. Lee GS, Filipovic N, Lin M, Gibney BC, Simpson DC, Konerding MA, Tsuda A, Mentzer SJ (2011) Intravascular pillars and pruning in the extraembryonic vessels of chick embryos. Dev Dyn 240:1335–1343

    Article  PubMed  Google Scholar 

  48. Fernandez LG, Le Cras TD, Ruiz M, Glover DK, Kron IL, Laubach VE (2007) Differential vascular growth in postpneumonectomy compensatory lung growth. J Thorac Cardiovasc Surg 133:309–316

    Article  PubMed  CAS  Google Scholar 

  49. Rannels DE, Stockstill B, Mercer RR, Crapo JD (1991) Cellular-changes in the lungs of adrenalectomized rats following left pneumonectomy. Am J Respir Cell Mol Biol 5:351–362

    PubMed  CAS  Google Scholar 

  50. Sekhon HS, Thurlbeck WM (1992) A comparative-study of postpneumonectomy compensatory lung response in growing male and female rats. J Appl Physiol 73:446–451

    PubMed  CAS  Google Scholar 

  51. Rannels DE, White DM, Watkins CA (1979) Rapidity of compensatory lung growth following pneumonectomy in adult rats. J Appl Physiol 46:326–333

    PubMed  CAS  Google Scholar 

  52. Cagle PT, Langston C, Goodman JC, Thurlbeck WM (1990) Autoradiographic assessment of the sequence of cellular proliferation in postpneumonectomy lung growth. Am J Respir Cell Mol Biol 3:153–158

    PubMed  CAS  Google Scholar 

  53. Thet LA, Law DJ (1984) Changes in cell number and lung morphology during early postpneumonectomy lung growth. J Appl Physiol 56:975–978

    PubMed  CAS  Google Scholar 

  54. Fisher JM, Simnett JD (1973) Morphogenetic and proliferative changes in regenerating lung of rat. Anat Rec 176:389–395

    Article  PubMed  CAS  Google Scholar 

  55. Brody JS, Burki R, Kaplan N (1978) Deoxyribonucleic-acid synthesis in lung-cells during compensatory lung growth after pneumonectomy. Am Rev Respir Dis 117:307–316

    PubMed  CAS  Google Scholar 

  56. Holmes C, Thurlbeck WM (1979) Normal lung growth and response after pneumonectomy in rats at various ages. Am Rev Respir Dis 120:1125–1136

    PubMed  CAS  Google Scholar 

  57. Foster DJ, Yan X, Bellotto DJ, Moe OW, Hagler HK, Estrera AS, Hsia CCW (2002) Expression of epidermal growth factor and surfactant proteins during postnatal and compensatory lung growth. Am J Physiol Lung Cell Mol Physiol 283:L981–L990

    PubMed  CAS  Google Scholar 

  58. Nattie EE, Wiley CW, Bartlett D (1974) Adaptive growth of lung following pneumonectomy in rats. J Appl Physiol 37:491–495

    PubMed  CAS  Google Scholar 

  59. Chamoto K, Gibney BC, Lee GS, Lin M, Simpson DC, Voswinckel R, Konerding MA, Tsuda A, Mentzer SJ (2011) CD34+ progenitor to endothelial cell transition in post-pneumonectomy angiogenesis. Am J Resp Cell Mol Biol (in press)

  60. Chamoto K, Gibney BC, Lee GS, Lin M, Konerding MA, Tsuda A, Mentzer SJ (2011) Alveolar macrophage dynamics in post-pneumonectomy lung growth. J Immunol (in revision)

  61. Zeltner TB, Bertacchini M, Messerli A, Burri PH (1990) Morphometric estimation of regional differences in the rat lung. Exp Lung Res 16:145–158

    Article  PubMed  CAS  Google Scholar 

  62. Marchand P, Gilroy JC, Wilson VH (1950) An anatomical study of the bronchial vascular system and its variations in disease. Thorax 5:207–221

    Article  PubMed  CAS  Google Scholar 

  63. Herrick SE, Mutsaers SE (2004) Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol 36:621–642

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants HL75426, HL94567 and HL007734 as well as the Uehara Memorial Foundation and the JSPS Postdoctoral Fellowships for Research Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Mentzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konerding, M.A., Gibney, B.C., Houdek, J.P. et al. Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis 15, 23–32 (2012). https://doi.org/10.1007/s10456-011-9236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-011-9236-y

Keywords

Navigation