Skip to main content

Regenerative Cells in the Ageing Lung

  • Chapter
Stem Cells in the Lung

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 825 Accesses

Abstract

Healthy ageing slowly transforms the structure, gas exchange efficiency, mechanical properties, immune functions, and stem-progenitor cells of the lung. Further, ageing alters the biological responses of the lung to injury, infection, and tissue resection. Regeneration of the lung can be reactivated by partial pneumonectomy (PNX), thus making PNX a unique and powerful model for the analysis of age-dependent regenerative mechanisms in the healthy lung. Specifically, the response to PNX manifests as compensatory growth and remarkable hyperplasia of stem-progenitor cells in the lung parenchyma and the formation of new alveoli by secondary septation akin to late development. Importantly, the abundance and proliferation potential of specific stem-progenitor cells in the PNX model are strikingly age dependent. This chapter focuses on important mechanisms of lung regeneration revealed by PNX that are thought to be vulnerable to healthy ageing and places those mechanisms in the context of chronic lung disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertoncello I, McQualter JL (2013) Lung stem cells: do they exist? Respirology 18(4):587–595

    Article  PubMed  Google Scholar 

  2. Thane K, Ingenito EP, Hoffman AM (2014) Lung regeneration and translational implications of the postpneumonectomy model. Transl Res 163(4):363–376

    Article  PubMed  Google Scholar 

  3. Hoffman AM, Ingenito EP (2012) Alveolar epithelial stem and progenitor cells: emerging evidence for their role in lung regeneration. Curr Med Chem 19(35):6003–6008

    Article  CAS  PubMed  Google Scholar 

  4. Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20(8):822–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Beers MF, Morrisey EE (2011) The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 121(6):2065–2073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Weibel ER (2013) It takes more than cells to make a good lung. Am J Respir Crit Care Med 187(4):342–346

    Article  CAS  PubMed  Google Scholar 

  7. Thurlbeck WM (1982) Postnatal human lung growth. Thorax 37(8):564–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Takeda S et al (1999) Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. J Appl Physiol 86(4):1301–1310

    CAS  PubMed  Google Scholar 

  9. Hsia CC et al (2000) Regenerative growth of respiratory bronchioles in dogs. Am J Physiol Lung Cell Mol Physiol 279(1):L136–L142

    CAS  PubMed  Google Scholar 

  10. Fehrenbach H et al (2008) Neoalveolarization contributes to compensatory lung growth following pneumonectomy in mice. Eur Respir J 31(3):515–522

    Article  CAS  PubMed  Google Scholar 

  11. Holmes C, Thurlbeck WM (1979) Normal lung growth and response after pneumonectomy in rats at various ages. Am Rev Respir Dis 120(5):1125–1136

    CAS  PubMed  Google Scholar 

  12. Voswinckel R et al (2004) Characterisation of post-pneumonectomy lung growth in adult mice. Eur Respir J 24(4):524–532

    Article  CAS  PubMed  Google Scholar 

  13. Yilmaz C et al (2009) Noninvasive quantification of heterogeneous lung growth following extensive lung resection by high-resolution computed tomography. J Appl Physiol 107(5):1569–1578

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ravikumar P et al (2007) Developmental signals do not further accentuate nonuniform postpneumonectomy compensatory lung growth. J Appl Physiol 102(3):1170–1177

    Article  PubMed  Google Scholar 

  15. Ravikumar P et al (2004) Regional lung growth following pneumonectomy assessed by computed tomography. J Appl Physiol 97(4):1567–1574, discussion 1549

    Article  PubMed  Google Scholar 

  16. Gibney BC et al (2012) Detection of murine post-pneumonectomy lung regeneration by 18FDG PET imaging. EJNMMI Res 2(1):48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Hoffman AM et al (2010) Matrix modulation of compensatory lung regrowth and progenitor cell proliferation in mice. Am J Physiol Lung Cell Mol Physiol 298(2):L158–L168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nolen-Walston RD et al (2008) Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 294(6):L1158–L1165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kho AT et al (2013) Identification of dedifferentiation and redevelopment phases during postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 305(8):L542–L554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Eisenhauer P et al (2013) Endogenous distal airway progenitor cells, lung mechanics, and disproportionate lobar growth following long-term postpneumonectomy in mice. Stem Cells 31(7):1330–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dane DM, Johnson RL Jr, Hsia CC (2002) Dysanaptic growth of conducting airways after pneumonectomy assessed by CT scan. J Appl Physiol 93(4):1235–1242

    Article  PubMed  Google Scholar 

  22. Buhain WJ, Brody JS (1973) Compensatory growth of the lung following pneumonectomy. J Appl Physiol 35(6):898–902

    CAS  PubMed  Google Scholar 

  23. Cagle PT, Thurlbeck WM (1988) Postpneumonectomy compensatory lung growth. Am Rev Respir Dis 138(5):1314–1326

    Article  CAS  PubMed  Google Scholar 

  24. Cagle PT, Langston C, Thurlbeck WM (1988) The effect of age on postpneumonectomy growth in rabbits. Pediatr Pulmonol 5(2):92–95

    Article  CAS  PubMed  Google Scholar 

  25. Davies P et al (1982) Structural changes in the canine lung and pulmonary arteries after pneumonectomy. J Appl Physiol 53(4):859–864

    CAS  PubMed  Google Scholar 

  26. Hsia CC et al (1994) Compensatory lung growth occurs in adult dogs after right pneumonectomy. J Clin Invest 94(1):405–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yan X et al (2004) Retinoic acid induces nonuniform alveolar septal growth after right pneumonectomy. J Appl Physiol 96(3):1080–1089

    Article  CAS  PubMed  Google Scholar 

  28. Malpel S, Mendelsohn C, Cardoso WV (2000) Regulation of retinoic acid signaling during lung morphogenesis. Development 127(14):3057–3067

    CAS  PubMed  Google Scholar 

  29. Dane DM et al (2004) Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy. J Appl Physiol 96(3):1090–1096

    Article  CAS  PubMed  Google Scholar 

  30. Yan X et al (2005) Lack of response to all-trans retinoic acid supplementation in adult dogs following left pneumonectomy. J Appl Physiol 99(5):1681–1688

    Article  CAS  PubMed  Google Scholar 

  31. Hsia CC, Johnson RL Jr (2006) Further examination of alveolar septal adaptation to left pneumonectomy in the adult lung. Respir Physiol Neurobiol 151(2–3):167–177

    Article  PubMed  Google Scholar 

  32. Butler JP et al (2012) Evidence for adult lung growth in humans. N Engl J Med 367(3):244–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Chen F et al (2012) Short-term outcome in living donors for lung transplantation: the role of preoperative computer tomographic evaluations of fissures and vascular anatomy. Transpl Int 25(7):732–738

    Article  PubMed  Google Scholar 

  34. Chen F et al (2012) Outcomes and pulmonary function in living lobar lung transplant donors. Transpl Int 25(2):153–157

    Article  PubMed  Google Scholar 

  35. Mizobuchi T et al (2013) Radiologic evaluation for volume and weight of remnant lung in living lung donors. J Thorac Cardiovasc Surg 146(5):1253–1258

    Article  PubMed  Google Scholar 

  36. D’Errico A et al (1989) Changes in the alveolar connective tissue of the ageing lung. An immunohistochemical study. Virchows Arch A Pathol Anat Histopathol 415(2):137–144

    Article  PubMed  Google Scholar 

  37. Kovacs T et al (2014) Alteration in the Wnt microenvironment directly regulates molecular events leading to pulmonary senescence. Aging Cell 13(5):838–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Falaschetti E et al (2004) Prediction equations for normal and low lung function from the health survey for England. Eur Respir J 23(3):456–463

    Article  CAS  PubMed  Google Scholar 

  39. Hankinson JL, Odencrantz JR, Fedan KB (1999) Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 159(1):179–187

    Article  CAS  PubMed  Google Scholar 

  40. DeLorey DS, Babb TG (1999) Progressive mechanical ventilatory constraints with aging. Am J Respir Crit Care Med 160(1):169–177

    Article  CAS  PubMed  Google Scholar 

  41. Huang K et al (2007) Age-dependent changes of airway and lung parenchyma in C57BL/6J mice. J Appl Physiol 102(1):200–206

    Article  PubMed  Google Scholar 

  42. Verbeken EK et al (1992) The senile lung. Comparison with normal and emphysematous lungs. 1. Structural aspects. Chest 101(3):793–799

    Article  CAS  PubMed  Google Scholar 

  43. Lang MR et al (1994) Collagen content of alveolar wall tissue in emphysematous and non-emphysematous lungs. Thorax 49(4):319–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Glassberg MK et al (2014) 17beta-estradiol replacement reverses age-related lung disease in estrogen-deficient C57BL/6J mice. Endocrinology 155(2):441–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Perl AK, Gale E (2009) FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 297(2):L299–L308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Chen L et al (2012) Dynamic regulation of platelet-derived growth factor receptor alpha expression in alveolar fibroblasts during realveolarization. Am J Respir Cell Mol Biol 47(4):517–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. McGowan SE, McCoy DM (2011) Fibroblasts expressing PDGF-receptor-alpha diminish during alveolar septal thinning in mice. Pediatr Res 70(1):44–49

    Article  CAS  PubMed  Google Scholar 

  49. McGowan SE, McCoy DM (2014) Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol 307(8):L618–L631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Perl AK et al (2005) Normal lung development and function after Sox9 inactivation in the respiratory epithelium. Genesis 41(1):23–32

    Article  CAS  PubMed  Google Scholar 

  51. McQualter JL et al (2013) TGF-beta signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung. Stem Cell Res 11(3):1222–1233

    Article  CAS  PubMed  Google Scholar 

  52. Lecart C et al (2000) Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation. Biol Neonate 77(4):217–223

    Article  CAS  PubMed  Google Scholar 

  53. Wolff JC et al (2010) Comparative gene expression profiling of post-natal and post-pneumonectomy lung growth. Eur Respir J 35(3):655–666

    Article  CAS  PubMed  Google Scholar 

  54. Paxson JA et al (2009) Global gene expression patterns in the post-pneumonectomy lung of adult mice. Respir Res 10:92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Paxson JA et al (2013) Age dependence of lung mesenchymal stromal cell dynamics following pneumonectomy. Stem Cells Dev 22(24):3214–3225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hoffman AM et al (2011) Lung derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase injured lung. Stem Cells Dev 20(10):1779–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. McQualter JL et al (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27(3):623–633

    Article  CAS  PubMed  Google Scholar 

  58. Brody JS, Burki R, Kaplan N (1978) Deoxyribonucleic acid synthesis in lung cells during compensatory lung growth after pneumonectomy. Am Rev Respir Dis 117(2):307–316

    CAS  PubMed  Google Scholar 

  59. Voswinckel R et al (2003) Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circ Res 93(4):372–379

    Article  CAS  PubMed  Google Scholar 

  60. Konerding MA et al (2012) Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis 15(1):23–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ackermann M et al (2014) Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: mechanisms of alveolar neovascularization. Angiogenesis 17(3):541–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Sakurai MK et al (2007) Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am J Physiol Lung Cell Mol Physiol 292(3):L742–L747

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Q et al (2007) Postpneumonectomy lung expansion elicits hypoxia-inducible factor-1alpha signaling. Am J Physiol Lung Cell Mol Physiol 293(2):L497–L504

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Q et al (2006) Regulated expression of hypoxia-inducible factors during postnatal and postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 290(5):L880–L889

    Article  CAS  PubMed  Google Scholar 

  65. Yuan S et al (2002) A role for platelet-derived growth factor-BB in rat postpneumonectomy compensatory lung growth. Pediatr Res 52(1):25–33

    Article  CAS  PubMed  Google Scholar 

  66. Leuwerke SM et al (2002) Inhibition of compensatory lung growth in endothelial nitric oxide synthase-deficient mice. Am J Physiol Lung Cell Mol Physiol 282(6):L1272–L1278

    Article  CAS  PubMed  Google Scholar 

  67. Panigrahy D et al (2013) Epoxyeicosanoids promote organ and tissue regeneration. Proc Natl Acad Sci U S A 110(33):13528–13533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Ding BS et al (2011) Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell 147(3):539–553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Jane-Wit D, Chun HJ (2012) Mechanisms of dysfunction in senescent pulmonary endothelium. J Gerontol A Biol Sci Med Sci 67(3):236–241

    Article  PubMed  Google Scholar 

  70. Hwang IS et al (2007) Age-related changes in adrenomedullin expression and hypoxia-inducible factor-1 activity in the rat lung and their responses to hypoxia. J Gerontol A Biol Sci Med Sci 62(1):41–49

    Article  PubMed  Google Scholar 

  71. Evans MJ et al (1973) Renewal of alveolar epithelium in the rat following exposure to NO2. Am J Pathol 70(2):175–198

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Barkauskas CE et al (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Driscoll B et al (2000) Telomerase in alveolar epithelial development and repair. Am J Physiol Lung Cell Mol Physiol 279(6):L1191–L1198

    CAS  PubMed  Google Scholar 

  74. Weinheimer VK et al (2012) Influenza a viruses target type II pneumocytes in the human lung. J Infect Dis 206(11):1685–1694

    Article  PubMed  Google Scholar 

  75. Kim CF et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    Article  CAS  PubMed  Google Scholar 

  76. Chapman HA et al (2011) Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 121(7):2855–2862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kajstura J et al (2011) Evidence for human lung stem cells. N Engl J Med 364(19):1795–1806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Fujino N et al (2012) Analysis of gene expression profiles in alveolar epithelial type II-like cells differentiated from human alveolar epithelial progenitor cells. Respir Invest 50(3):110–116

    Google Scholar 

  79. Fujino N et al (2011) Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest 91(3):363–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. McQualter JL et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 107(4):1414–1419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Sen N, Weprin S, Peter Y (2013) Discrimination between lung homeostatic and injury-induced epithelial progenitor subsets by cell-density properties. Stem Cells Dev 22(14):2036–2046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Rock JR et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–E1483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Zheng D et al (2013) A cellular pathway involved in Clara cell to alveolar type II cell differentiation after severe lung injury. PLoS One 8(8), e71028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Kumar PA et al (2011) Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell 147(3):525–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Buckley S et al (2011) The milieu of damaged alveolar epithelial type 2 cells stimulates alveolar wound repair by endogenous and exogenous progenitors. Am J Respir Cell Mol Biol 45(6):1212–1221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Wada H et al (2012) Transplantation of alveolar type II cells stimulates lung regeneration during compensatory lung growth in adult rats. J Thorac Cardiovasc Surg 143(3):711–719, e2

    Article  PubMed  Google Scholar 

  87. Srisuma S et al (2010) Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. Am J Respir Crit Care Med 181(8):838–850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Weinstein M et al (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125(18):3615–3623

    CAS  PubMed  Google Scholar 

  89. Calvi C et al (2013) Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung. PLoS Genet 9(2), e1003228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Oeztuerk-Winder F et al (2012) Regulation of human lung alveolar multipotent cells by a novel p38alpha MAPK/miR-17-92 axis. EMBO J 31(16):3431–3441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Ruiz EJ, Oeztuerk-Winder F, Ventura JJ (2014) A paracrine network regulates the cross-talk between human lung stem cells and the stroma. Nat Commun 5:3175

    PubMed Central  PubMed  Google Scholar 

  92. Warburton D et al (2008) Stem/progenitor cells in lung development, injury repair, and regeneration. Proc Am Thorac Soc 5(6):703–706

    Article  PubMed Central  PubMed  Google Scholar 

  93. Warburton D et al (2001) Do lung remodeling, repair, and regeneration recapitulate respiratory ontogeny? Am J Respir Crit Care Med 164(10 Pt 2):S59–S62

    Article  CAS  PubMed  Google Scholar 

  94. Foster DJ, Moe OW, Hsia CC (2004) Upregulation of erythropoietin receptor during postnatal and postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 287(6):L1107–L1115

    Article  CAS  PubMed  Google Scholar 

  95. Foster DJ et al (2002) Expression of epidermal growth factor and surfactant proteins during postnatal and compensatory lung growth. Am J Physiol Lung Cell Mol Physiol 283(5):L981–L990

    Article  CAS  PubMed  Google Scholar 

  96. Paxson JA et al (2011) Age-dependent decline in mouse lung regeneration with loss of lung fibroblast clonogenicity and increased myofibroblastic differentiation. PLoS One 6(8), e23232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Satoh A, Bryant SV, Gardiner DM (2008) Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healing and limb regeneration in the Axolotl. Dev Growth Differ 50(9):743–754

    Article  CAS  PubMed  Google Scholar 

  98. Moodley Y, Thompson P, Warburton D (2013) Stem cells: a recapitulation of development. Respirology 18(8):1167–1176

    Article  PubMed  Google Scholar 

  99. Park KS et al (2006) Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol 34(2):151–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Whitsett JA, Haitchi HM, Maeda Y (2011) Intersections between pulmonary development and disease. Am J Respir Crit Care Med 184(4):401–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Takahashi Y et al (2010) Thyroid transcription factor-1 influences the early phase of compensatory lung growth in adult mice. Am J Respir Crit Care Med 181(12):1397–1406

    Article  CAS  PubMed  Google Scholar 

  102. Lin M et al (2011) Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth. Respir Res 12:98

    Article  PubMed Central  PubMed  Google Scholar 

  103. Chamoto K et al (2013) Alveolar epithelial dynamics in postpneumonectomy lung growth. Anat Rec 296(3):495–503

    Article  CAS  Google Scholar 

  104. Chamoto K et al (2013) Migration of CD11b+ accessory cells during murine lung regeneration. Stem Cell Res 10(3):267–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Sun Z et al (2014) Inhibition of Wnt/beta-catenin signaling promotes engraftment of mesenchymal stem cells to repair lung injury. J Cell Physiol 229(2):213–224

    Article  CAS  PubMed  Google Scholar 

  106. Vaidya A et al (2014) Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet 10(7), e1004511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Meijer C et al (2000) Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver 20(1):66–77

    Article  CAS  PubMed  Google Scholar 

  108. Jones CV et al (2013) M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res 14:41

    Article  PubMed Central  PubMed  Google Scholar 

  109. Brown BN, Badylak SF (2014) Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 163(4):268–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Cortiella J et al (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8):2565–2580

    Article  CAS  PubMed  Google Scholar 

  111. Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  CAS  PubMed  Google Scholar 

  112. Rannels DE, Rannels SR (1988) Compensatory growth of the lung following partial pneumonectomy. Exp Lung Res 14(2):157–182

    Article  CAS  PubMed  Google Scholar 

  113. Koh DW et al (1996) Postpneumonectomy lung growth: a model of reinitiation of tropoelastin and type I collagen production in a normal pattern in adult rat lung. Am J Respir Cell Mol Biol 15(5):611–623

    Article  CAS  PubMed  Google Scholar 

  114. Griffith KA et al (2001) Predictors of loss of lung function in the elderly: the Cardiovascular Health Study. Am J Respir Crit Care Med 163(1):61–68

    Article  CAS  PubMed  Google Scholar 

  115. Ranga V et al (1979) Age-related changes in elastic fibers and elastin of lung. Am Rev Respir Dis 119(3):369–376

    CAS  PubMed  Google Scholar 

  116. Shapiro SD et al (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87(5):1828–1834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Shifren A et al (2007) Elastin protein levels are a vital modifier affecting normal lung development and susceptibility to emphysema. Am J Physiol Lung Cell Mol Physiol 292(3):L778–L787

    Article  CAS  PubMed  Google Scholar 

  118. Correa-Meyer E et al (2002) Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 282(5):L883–L891

    Article  CAS  PubMed  Google Scholar 

  119. Edwards YS et al (1999) Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Lett 448(1):127–130

    Article  CAS  PubMed  Google Scholar 

  120. Pasternack M Jr et al (1997) Regulated stimulation of epithelial cell DNA synthesis by fibroblast-derived mediators. Am J Physiol 272(4 Pt 1):L619–L630

    CAS  PubMed  Google Scholar 

  121. Pelissier FA et al (2014) Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep 7(6):1926–1939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Lwebuga-Mukasa JS, Ingbar DH, Madri JA (1986) Repopulation of a human alveolar matrix by adult rat type II pneumocytes in vitro. A novel system for type II pneumocyte culture. Exp Cell Res 162(2):423–435

    Article  CAS  PubMed  Google Scholar 

  123. Horwitz AL, Crystal RC (1975) Content and synthesis of glycosaminoglycans in the developing lung. J Clin Invest 56(5):1312–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Chen P et al (2005) Formation of lung alveolar-like structures in collagen-glycosaminoglycan scaffolds in vitro. Tissue Eng 11(9–10):1436–1448

    Article  CAS  PubMed  Google Scholar 

  125. Armanios M (2013) Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 123(3):996–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Lee J et al (2009) Lung alveolar integrity is compromised by telomere shortening in telomerase-null mice. Am J Physiol Lung Cell Mol Physiol 296(1):L57–L70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Jackson SR et al (2011) Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response. Am J Physiol Lung Cell Mol Physiol 300(6):L898–L909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Tsuji T, Aoshiba K, Nagai A (2004) Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol 31(6):643–649

    Article  CAS  PubMed  Google Scholar 

  129. Walters MS et al (2014) Smoking accelerates aging of the small airway epithelium. Respir Res 15(1):94

    Article  PubMed Central  PubMed  Google Scholar 

  130. Tsuji T, Aoshiba K, Nagai A (2010) Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease. Respiration 80(1):59–70

    Article  PubMed  Google Scholar 

  131. Tsuji T, Aoshiba K, Nagai A (2006) Alveolar cell senescence in patients with pulmonary emphysema. Am J Respir Crit Care Med 174(8):886–893

    Article  CAS  PubMed  Google Scholar 

  132. Kumar M, Seeger W, Voswinckel R (2014) Senescence-associated secretory phenotype and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 51(3):323–333

    Article  PubMed  CAS  Google Scholar 

  133. Hoffmann RF et al (2013) Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res 14:97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Hara H et al (2013) Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol 305(10):L737–L746

    Article  CAS  PubMed  Google Scholar 

  135. Alder JK et al (2011) Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med 184(8):904–912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Zhou S et al (2013) Aging does not enhance experimental cigarette smoke-induced COPD in the mouse. PLoS One 8(8), e71410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Warburton D et al (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Sueblinvong V et al (2012) Predisposition for disrepair in the aged lung. Am J Med Sci 344(1):41–51

    Article  PubMed Central  PubMed  Google Scholar 

  139. Thannickal VJ (2013) Mechanistic links between aging and lung fibrosis. Biogerontology 14(6):609–615

    Article  CAS  PubMed  Google Scholar 

  140. Chilosi M et al (2013) Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 162(3):156–173

    Article  CAS  PubMed  Google Scholar 

  141. Alder JK et al (2008) Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A 105(35):13051–13056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Armanios MY et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356(13):1317–1326

    Article  CAS  PubMed  Google Scholar 

  143. Kropski JA et al (2013) Genetic studies provide clues on the pathogenesis of idiopathic pulmonary fibrosis. Dis Model Mech 6(1):9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Leeman KT, Fillmore CM, Kim CF (2014) Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol 107:207–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Xu X et al (2012) Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc Natl Acad Sci U S A 109(13):4910–4915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Bell JT et al (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet 8(4), e1002629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Lui JC et al (2014) Broad shifts in gene expression during early postnatal life are associated with shifts in histone methylation patterns. PLoS One 9(1), e86957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Maegawa S et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20(3):332–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Sidler C et al (2014) A role for SUV39H1-mediated H3K9 trimethylation in the control of genome stability and senescence in WI38 human diploid lung fibroblasts. Aging 6(7):545–563

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoffman, A.M. (2015). Regenerative Cells in the Ageing Lung. In: Bertoncello, I. (eds) Stem Cells in the Lung. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21082-7_8

Download citation

Publish with us

Policies and ethics