Skip to main content

Advertisement

Log in

Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Atherosclerosis is a progressive systemic disease of the large arteries characterized by the formation of plaques in the vessel wall. Despite our knowledge of its pathogenesis, many vulnerable plaques still remain undiagnosed while in their asymptomatic phase and manifest for the first time with dramatic clinical events, such as stroke or myocardial infarction. In recent years, it is becoming clearer that sudden clinical events do not necessarily correlate with the degree of luminal obstruction caused by lesions, but rather with plaque composition. In particular, the degree of plaque inflammation is important in the pathogenesis of atherosclerosis and is considered a good marker of high-risk/vulnerable plaques. The presence of inflammatory infiltrate and plaque neovascularization are both histological hallmarks of atherosclerotic plaque inflammation. Therefore, plaque angiogenesis represents an attractive target to try and identify asymptomatic high-risk lesions. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is a technique that has been used extensively in the past to study the vascularity of tumors and its changes following therapeutic intervention. Recently, delayed and dynamic contrast enhanced (CE) MRI have been proposed as non-invasive tools to study the extent of plaque neovascularization in animals and patients with atherosclerosis. In this review, we will provide a brief introduction on DCE-MRI acquisition and analysis techniques. We will follow this with a description of contrast enhanced MR methods for the detection and quantification of neovasculature in atherosclerosis, with an emphasis on DCE-MRI. Finally, we will examine the current limitations and challenges faced by DCE-MRI and briefly discuss its future applications in the context of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J (2008) Harrison’s Principles if Internal Medicine tECEoCDPM-H, editor; 2008. Harrison’s Principles if Internal Medicine, 17th edn. Chapter 218. Epidemiology of Cardiovascular Disease. Professional M-H, editor 2008

  2. http://www.who.int/

  3. Ambrose JA, Srikanth S Vulnerable plaques and patients: improving prediction of future coronary events. Am J Med 123(1):10–16

  4. Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16(3):267–272

    Article  PubMed  Google Scholar 

  5. Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V (2006) Neovascularization in human atherosclerosis. Circulation 113(18):2245–2252

    Article  PubMed  Google Scholar 

  6. Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218(1):7–29

    Article  PubMed  Google Scholar 

  7. Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NP (2007) Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. J Vasc Surg 45(1):155–159

    Article  PubMed  Google Scholar 

  8. Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 46(6):937–954

    Article  PubMed  Google Scholar 

  9. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  PubMed  CAS  Google Scholar 

  10. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, Badimon JJ, O’Connor WN (2004) Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 110(14):2032–2038

    Article  PubMed  Google Scholar 

  11. Moreno PR, Purushothaman KR, Fuster V, O’Connor WN (2002) Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta: implications for plaque vulnerability. Circulation 105(21):2504–2511

    Article  PubMed  Google Scholar 

  12. Moreno PR, Purushothaman KR, Zias E, Sanz J, Fuster V (2006) Neovascularization in human atherosclerosis. Curr Mol Med 6(5):457–477

    Article  PubMed  CAS  Google Scholar 

  13. Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T, Yuan C (2003) Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 107(6):851–856

    Article  PubMed  Google Scholar 

  14. Calcagno C, Cornily JC, Hyafil F, Rudd JH, Briley-Saebo KC, Mani V, Goldschlager G, Machac J, Fuster V, Fayad ZA (2008) Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler Thromb Vasc Biol 28(7):1311–1317

    Article  PubMed  CAS  Google Scholar 

  15. Padhani A (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16(4):407–422

    Article  PubMed  Google Scholar 

  16. Yankeelov TE, Gore JC (2009) Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev 3(2):91–107

    Article  PubMed  Google Scholar 

  17. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232

    Article  PubMed  CAS  Google Scholar 

  18. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York

  19. Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367

    Google Scholar 

  20. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476–483

    Article  Google Scholar 

  21. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7

    PubMed  CAS  Google Scholar 

  22. Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, Price RR, Gore JC (2005) Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 23(4):519–529

    Article  PubMed  CAS  Google Scholar 

  23. Yankeelov TE, DeBusk LM, Billheimer DD, Luci JJ, Lin PC, Price RR, Gore JC (2006) Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T. J Magn Reson Imaging 24(5):1140–1147

    Article  PubMed  Google Scholar 

  24. Yankeelov TE, Cron GO, Addison CL, Wallace JC, Wilkins RC, Pappas BA, Santyr GE, Gore JC (2007) Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE-MRI data. Magn Reson Med 57(2):353–361

    Article  PubMed  Google Scholar 

  25. Faranesh AZ, Yankeelov TE (2008) Incorporating a vascular term into a reference region model for the analysis of DCE-MRI data: a simulation study. Phys Med Biol 53(10):2617–2631

    Article  PubMed  CAS  Google Scholar 

  26. Jesberger JA, Rafie N, Duerk JL, Sunshine JL, Mendez M, Remick SC, Lewin JS (2006) Model-free parameters from dynamic contrast-enhanced-MRI: sensitivity to EES volume fraction and bolus timing. J Magn Reson Imaging 24(3):586–594

    Article  PubMed  Google Scholar 

  27. Walker-Samuel S, Leach MO, Collins DJ (2006) Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 51(14):3593–3602

    Article  PubMed  CAS  Google Scholar 

  28. Fuster V, Fayad ZA, Moreno PR, Poon M, Corti R, Badimon JJ (2005) Atherothrombosis and high-risk plaque: Part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 46(7):1209–1218

    Article  PubMed  CAS  Google Scholar 

  29. Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ (2003) Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 108(5):605–609

    Article  PubMed  CAS  Google Scholar 

  30. Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109(23):2890–2896

    Article  PubMed  CAS  Google Scholar 

  31. Koktzoglou I, Harris KR, Tang R, Kane BJ, Misselwitz B, Weinmann HJ, Lu B, Nagaraj A, Roth SI, Carroll TJ, McPherson DD, Li D (2006) Gadofluorine-enhanced magnetic resonance imaging of carotid atherosclerosis in Yucatan miniswine. Invest Radiol 41(3):299–304

    Article  PubMed  Google Scholar 

  32. Zheng J, Ochoa E, Misselwitz B, Yang D, El Naqa I, Woodard PK, Abendschein D (2008) Targeted contrast agent helps to monitor advanced plaque during progression: a magnetic resonance imaging study in rabbits. Invest Radiol 43(1):49–55

    Article  PubMed  Google Scholar 

  33. Sirol M, Moreno PR, Purushothaman KR, Vucic E, Amirbekian V, Weinmann HJ, Muntner P, Fuster V, Fayad ZA (2009) Increased neovascularization in advanced lipid-rich atherosclerotic lesions detected by gadofluorine-M-enhanced MRI: implications for plaque vulnerability. Circ Cardiovasc Imaging 2(5):391–396

    Article  PubMed  Google Scholar 

  34. Imai Y, Kaneko E, Asano T, Kumagai M, Ai M, Kawakami A, Kataoka K, Shimokado K (2007) A novel contrast medium detects increased permeability of rat injured carotid arteries in magnetic resonance T2 mapping imaging. J Atheroscler Thromb 14(2):65–71

    PubMed  Google Scholar 

  35. Chaabane L, Pellet N, Bourdillon MC, Desbleds Mansard C, Sulaiman A, Hadour G, Thivolet-Bejui F, Roy P, Briguet A, Douek P, Canet Soulas E (2004) Contrast enhancement in atherosclerosis development in a mouse model: in vivo results at 2 Tesla. MAGMA 17(3–6):188–195

    Article  PubMed  CAS  Google Scholar 

  36. Alsaid H, Sabbah M, Bendahmane Z, Fokapu O, Felblinger J, Desbleds-Mansard C, Corot C, Briguet A, Cremillieux Y, Canet-Soulas E (2007) High-resolution contrast-enhanced MRI of atherosclerosis with digital cardiac and respiratory gating in mice. Magn Reson Med 58(6):1157–1163

    Article  PubMed  Google Scholar 

  37. Lobbes MB, Miserus RJ, Heeneman S, Passos VL, Mutsaers PH, Debernardi N, Misselwitz B, Post M, Daemen MJ, van Engelshoven JM, Leiner T, Kooi ME (2009) Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model—comparison of gadofosveset and gadopentetate dimeglumine. Radiology 250(3):682–691

    Article  PubMed  Google Scholar 

  38. Cornily JC, Hyafil F, Calcagno C, Briley-Saebo KC, Tunstead J, Aguinaldo JG, Mani V, Lorusso V, Cavagna FM, Fayad ZA (2008) Evaluation of neovessels in atherosclerotic plaques of rabbits using an albumin-binding intravascular contrast agent and MRI. J Magn Reson Imaging 27(6):1406–1411

    Article  PubMed  Google Scholar 

  39. Aoki S, Aoki K, Ohsawa S, Nakajima H, Kumagai H, Araki T (1999) Dynamic MR imaging of the carotid wall. J Magn Reson Imaging 9(3):420–427

    Article  PubMed  CAS  Google Scholar 

  40. Wasserman BA, Smith WI, Trout HH, Cannon RO, Balaban RS, Arai AE (2002) Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 223(2):566–573

    Article  PubMed  Google Scholar 

  41. Wasserman BA, Casal SG, Astor BC, Aletras AH, Arai AE (2005) Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J Magn Reson Imaging 21(1):91–95

    Article  PubMed  Google Scholar 

  42. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, Hatsukami TS (2002) Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15(1):62–67

    Article  PubMed  Google Scholar 

  43. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, Takaya N, Polissar NL, Yuan C (2005) In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112(22):3437–3444

    Article  PubMed  Google Scholar 

  44. Kerwin WS, Liu F, Yarnykh V, Underhill H, Oikawa M, Yu W, Hatsukami TS, Yuan C (2008) Signal features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: impact on automatic classification. J Magn Reson Imaging 28(4):987–995

    Google Scholar 

  45. Kerwin WS, Zhao X, Yuan C, Hatsukami TS, Maravilla KR, Underhill HR (2009) Contrast-enhanced MRI of carotid atherosclerosis: dependence on contrast agent. J Magn Reson Imaging 30(1):35–40

    Article  PubMed  Google Scholar 

  46. Chu B, Zhao XQ, Saam T, Yarnykh VL, Kerwin WS, Flemming KD, Huston J 3rd, Insull W Jr, Morrisett JD, Rand SD, DeMarco KJ, Polissar NL, Balu N, Cai J, Kampschulte A, Hatsukami TS, Yuan C (2005) Feasibility of in vivo, multicontrast-weighted MR imaging of carotid atherosclerosis for multicenter studies. J Magn Reson Imaging 21(6):809–817

    Article  PubMed  Google Scholar 

  47. Wasserman BA, Astor BC, Sharrett AR, Swingen C, Catellier D. MRI measurements of carotid plaque in the atherosclerosis risk in communities (ARIC) study: methods, reliability and descriptive statistics. J Magn Reson Imaging 31(2):406–415

  48. Larose E, Kinlay S, Selwyn AP, Yeghiazarians Y, Yucel EK, Kacher DF, Libby P, Ganz P (2008) Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. Atherosclerosis 196(2):919–925

    Article  PubMed  CAS  Google Scholar 

  49. Kerwin WS, Cai J, Yuan C (2002) Noise and motion correction in dynamic contrast-enhanced MRI for analysis of atherosclerotic lesions. Magn Reson Med 47(6):1211–1217

    Article  PubMed  CAS  Google Scholar 

  50. Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241(2):459–468

    Article  PubMed  Google Scholar 

  51. Kerwin WS, Oikawa M, Yuan C, Jarvik GP, Hatsukami TS (2008) MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 59(3):507–514

    Article  PubMed  CAS  Google Scholar 

  52. Calcagno C, Vucic E, Mani V, Lobatto ME, Mulder WJM, ZAF (2008) Reproducibility and treatment monitoring potential of dynamic contrast enhanced MRI in atherosclerotic rabbits. 2008 World Molecular Imaging Congress, September 10–13 2008, Nice, France

  53. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103(3):415–422

    PubMed  CAS  Google Scholar 

  54. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107(19):2453–2458

    Article  PubMed  CAS  Google Scholar 

  55. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108(18):2270–2274

    Article  PubMed  CAS  Google Scholar 

  56. Winter PM, Neubauer AM, Caruthers SD, Harris TD, Robertson JD, Williams TA, Schmieder AH, Hu G, Allen JS, Lacy EK, Zhang H, Wickline SA, Lanza GM (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26(9):2103–2109

    Article  PubMed  CAS  Google Scholar 

  57. Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM (2009) Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):311–323

    Article  PubMed  CAS  Google Scholar 

  58. Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM (2008) Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging 1(5):624–634

    Article  PubMed  Google Scholar 

  59. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, JohnstrÃm P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105(23):2708–2711

    Google Scholar 

  60. Davies JR, Rudd JH, Weissberg PL (2004) Molecular and metabolic imaging of atherosclerosis. J Nucl Med 45(11):1898–1907

    PubMed  CAS  Google Scholar 

  61. Rudd JH, Davies JR, Weissberg PL (2005) Imaging of atherosclerosis—can we predict plaque rupture? Trends Cardiovasc Med 15(1):17–24

    Article  PubMed  Google Scholar 

  62. Davies JR, Rudd JH, Weissberg PL, Narula J (2006) Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 47(8 Suppl)

  63. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, Rafique A, Hargeaves R, Farkouh M, Fuster V, Fayad ZA (2008) Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 49(6):871–878

    Article  PubMed  Google Scholar 

  64. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, Fuster V, Fayad ZA (2007) (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 50(9):892–896

    Article  PubMed  Google Scholar 

  65. Rudd JH, Machac J, Fayad ZA (2007) Simvastatin and plaque inflammation. J Am Coll Cardiol 49(19):1991; author reply 1991–1992

  66. Kerwin W (2005) Imaging of plaque cellular activity with contrast enhanced MRI. Stud Health Technol Inform 113:360–383

    PubMed  Google Scholar 

  67. Yankeelov TE, Luci JJ, DeBusk LM, Lin PC, Gore JC (2008) Incorporating the effects of transcytolemmal water exchange in a reference region model for DCE-MRI analysis: theory, simulations, and experimental results. Magn Reson Med 59(2):326–335

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Calcagno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calcagno, C., Mani, V., Ramachandran, S. et al. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis 13, 87–99 (2010). https://doi.org/10.1007/s10456-010-9172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-010-9172-2

Keywords

Navigation