Skip to main content
Log in

Gα13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The α subunit of heterotrimeric G13 protein is required for the embryonic angiogenesis (Offermanns et al., Science 275:533–536, 1997). However, the molecular mechanism of Gα13-dependent angiogenesis is not understood. Here, we show that myocyte-specific enhancer factor-2 (MEF2) mediates Gα13-dependent angiogenesis. Our data showed that constitutively activated Gα13Q226L stimulated MEF2-dependent gene transcription. In addition, downregulation of endogenous Gα13 inhibited thrombin-stimulated MEF2-dependent gene transcription in endothelial cells. Both Ca2+/calmodulin-dependent kinase IV (CaMKIV) and histone deacetylase 5 (HDAC5) were involved in Gα13-mediated MEF2-dependent gene transcription. Gα13Q226L also increased Ca2+/calmodulin-independent CaMKIV activity, while dominant negative mutant of CaMKIV inhibited MEF2-dependent gene transcription induced by Gα13Q226L. Furthermore, Gα13Q226L was able to derepress HDAC5-mediated repression of gene transcription and induce the translocation of HDAC5 from nucleus to cytoplasm. Finally, downregulation of endogenous Gα13 and MEF2 proteins in endothelial cells reduced cell proliferation and capillary tube formation. Decrease of endothelial cell proliferation that was caused by the Gα13 downregulation was partially restored by the constitutively active MEF2-VP16. Our studies suggest that MEF2 proteins are an important component in Gα13-mediated angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adarichev VA, Vaiskunaite R, Niu J, Balyasnikova IV, Voyno-Yasenetskaya TA (2003) Ga13-mediated transformation and apoptosis is permissively dependent on basal ERK activity. Am J Physiol Cell Physiol 285:C922–C934

    PubMed  CAS  Google Scholar 

  2. Anderson KA, Noeldner PK, Reece K, Wadzinski BE, Means AR (2004) Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. J Biol Chem 279:31708–31716. doi:10.1074/jbc.M404523200

    Article  PubMed  CAS  Google Scholar 

  3. Andreeva AV, Kutuzov MA, Vaiskunaite R, Profirovic J, Meigs TE, Predescu S, Malik AB, Voyno-Yasenetskaya T (2005) G alpha12 interaction with alphaSNAP induces VE-cadherin localization at endothelial junctions and regulates barrier function. J Biol Chem 280:30376–30383. doi:10.1074/jbc.M502844200

    Article  PubMed  CAS  Google Scholar 

  4. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116:1853–1864. doi:10.1172/JCI27438

    Article  PubMed  CAS  Google Scholar 

  5. Belfield JL, Whittaker C, Cader MZ, Chawla S (2006) Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J Biol Chem 281:27724–27732. doi:10.1074/jbc.M601485200

    Article  PubMed  CAS  Google Scholar 

  6. Bertos NR, Wang AH, Yang XJ (2001) Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79:243–252. doi:10.1139/bcb-79-3-243

    Article  PubMed  CAS  Google Scholar 

  7. Bi W, Drake CJ, Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211:255–267. doi:10.1006/dbio.1999.9307

    Article  PubMed  CAS  Google Scholar 

  8. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196. doi:10.1146/annurev.cellbio.14.1.167

    Article  PubMed  CAS  Google Scholar 

  9. Bryan BA, D’Amore PA (2007) What tangeled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci 64:2053–2065. doi:10.1007/s00018-007-7008-z

    Article  PubMed  CAS  Google Scholar 

  10. Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL (1995) G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem 270:24631–24634. doi:10.1074/jbc.270.42.24631

    Article  PubMed  CAS  Google Scholar 

  11. Chow FA, Anderson KA, Noeldner PK, Means AR (2005) The autonomous activity of calcium/calmodulin-dependent protein kinase IV is required for its role in transcription. J Biol Chem 280:20530–20538. doi:10.1074/jbc.M500067200

    Article  PubMed  CAS  Google Scholar 

  12. Collins LR, Minden A, Karin M, Brown JH (1996) Galpha12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J Biol Chem 271:17349–17353. doi:10.1074/jbc.271.29.17349

    Article  PubMed  CAS  Google Scholar 

  13. Dermott JM, Reddy MR, Onesime D, Reddy EP, Dhanasekaran N (1999) Oncogenic mutant of Galpha12 stimulates cell proliferation through cycloxygenase-2 signaling pathway. Oncogene 18:7185–7189. doi:10.1038/sj.onc.1203345

    Article  PubMed  CAS  Google Scholar 

  14. Dormond O, Rüegg C (2003) Regulation of endothelial cell integrin function and angiogenesis by COX-2, cAMP and protein kinase A. Thromb Haemost 90:577–585

    PubMed  CAS  Google Scholar 

  15. Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci USA 94:10098–10103. doi:10.1073/pnas.94.19.10098

    Article  PubMed  CAS  Google Scholar 

  16. Fukuhara S, Marinissen MJ, Chiariello M, Gutkind JS (2000) Signaling from G protein-coupled receptors to ERK5/big MAPK 1 involves Galpha q and Galpha 12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras and Rho-independent pathway. J Biol Chem 275:21730–21736. doi:10.1074/jbc.M002410200

    Article  PubMed  CAS  Google Scholar 

  17. Gilchrist A, Vanhauwe JF, Li A, Thomas TO, Voyno-Yasenetskaya T, Hamm HE (2001) G alpha minigenes expressing C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. J Biol Chem 276:25672–25679. doi:10.1074/jbc.M100914200

    Article  PubMed  CAS  Google Scholar 

  18. Gossett LA, Kelvin DJ, Sternberg EA, Olson EN (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9:5022–5033

    PubMed  CAS  Google Scholar 

  19. Gu JL, Muller S, Mancino V, Offermanns S, Simon MI (2002) Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci USA 99:9352–9357. doi:10.1073/pnas.102291599

    Article  PubMed  CAS  Google Scholar 

  20. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, Sternweis PC, Bollag G (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280:2112–2114. doi:10.1126/science.280.5372.2112

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148

    PubMed  CAS  Google Scholar 

  22. Johnson EN, Seasholtz TM, Waheed AA, Kreutz B, Suzuki N, Kozasa T, Jones TL, Brown JH, Druey KM (2003) RGS16 inhibits signalling through the G alpha 13-Rho axis. Nat Cell Biol 5:1095–1103. doi:10.1038/ncb1065

    Article  PubMed  CAS  Google Scholar 

  23. Kawaguchi SY, Hirano T (2002) Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons. J Neurosci 22:3969–3976

    PubMed  CAS  Google Scholar 

  24. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC (1998) p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280:2109–2111. doi:10.1126/science.280.5372.2109

    Article  PubMed  CAS  Google Scholar 

  25. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem 275:15594–15599. doi:10.1074/jbc.M908437199

    Article  PubMed  CAS  Google Scholar 

  26. Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    PubMed  CAS  Google Scholar 

  27. Linseman DA, Cornejo BJ, Le SS, Meintzer MK, Laessig TA, Bouchard RJ, Heidenreich KA (2003) A myocyte enhancer factor 2D (MEF2D) kinase activated during neuronal apoptosis is a novel target inhibited by lithium. J Neurochem 85:1488–1499. doi:10.1046/j.1471-4159.2003.09799.x

    Article  PubMed  CAS  Google Scholar 

  28. Liu G, Voyno-Yasenetskaya TA (2005) Radixin stimulates Rac1 and Ca2 +/calmodulin-dependent kinase, CaMKII: Crosstalk with Galpha 13 signaling. J Biol Chem 280(47):39042–39049

    Article  PubMed  CAS  Google Scholar 

  29. Maiti D, Xu Z, Duh EJ (2008) Vascular endothelial growth factor induces MEF2C and MEF2-dependent activity in endothelial cells. Invest Ophthalmol Vis Sci 49:3640–3648. doi:10.1167/iovs.08-1760

    Article  PubMed  Google Scholar 

  30. Matsushita M, Nairn AC (1999) Inhibition of the Ca2+/calmodulin-dependent protein kinase I cascade by cAMP-dependent protein kinase. J Biol Chem 274:10086–10093. doi:10.1074/jbc.274.15.10086

    Article  PubMed  CAS  Google Scholar 

  31. McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111. doi:10.1038/35040593

    Article  PubMed  CAS  Google Scholar 

  32. McKinsey TA, Zhang CL, Olson EN (2000) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA 97:14400–14405. doi:10.1073/pnas.260501497

    Article  PubMed  CAS  Google Scholar 

  33. McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47. doi:10.1016/S0968-0004(01)02031-X

    Article  PubMed  CAS  Google Scholar 

  34. Mottet D, Bellahcène A, Pirotte S, Waltregny D, Deroanne C, Lamour V, Lidereau R, Castronovo V (2007) Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res 101:1237–1246. doi:10.1161/CIRCRESAHA.107.149377

    Article  PubMed  CAS  Google Scholar 

  35. Niu J, Vaiskunaite R, Suzuki N, Kozasa T, Carr DW, Dulin N, Voyno-Yasenetskaya TA (2001) Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. Curr Biol 11:1686–1690. doi:10.1016/S0960-9822(01)00530-9

    Article  PubMed  CAS  Google Scholar 

  36. Offermanns S, Mancino V, Revel JP, Simon MI (1997) Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275:533–536. doi:10.1126/science.275.5299.533

    Article  PubMed  CAS  Google Scholar 

  37. Postma FR, Jalink K, Hengeveld T, Offermanns S, Moolenaar WH (2001) Galpha(13) mediates activation of a depolarizing chloride current that accompanies RhoA activation in both neuronal and nonneuronal cells. Curr Biol 11:121–124. doi:10.1016/S0960-9822(01)00030-6

    Article  PubMed  CAS  Google Scholar 

  38. Prasad MV, Dermott JM, Heasley LE, Johnson GL, Dhanasekaran N (1995) Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of G alpha 12 and G alpha 13. J Biol Chem 270:18655–18659. doi:10.1074/jbc.270.31.18655

    Article  PubMed  CAS  Google Scholar 

  39. Profirovic J, Gorovoy M, Niu J, Pavlovic S, Voyno-Yasenetskaya T (2005) A novel mechanism of G protein-dependent phosphorylation of vasodilator-stimulated phosphoprotein. J Biol Chem 280:32866–32876. doi:10.1074/jbc.M501361200

    Article  PubMed  CAS  Google Scholar 

  40. Radhika V, Onesime D, Ha JH, Dhanasekaran N (2004) Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279:49406–49413. doi:10.1074/jbc.M408836200

    Article  PubMed  CAS  Google Scholar 

  41. Rahman A, True AL, Anwar KN, Ye RD, Voyno-Yasenetskaya TA, Malik AB (2002) Galpha(q) and Gbetagamma regulate PAR-1 signaling of thrombin-induced NF-kappaB activation and ICAM-1 transcription in endothelial cells. Circ Res 91:398–405. doi:10.1161/01.RES.0000033520.95242.A2

    Article  PubMed  CAS  Google Scholar 

  42. Ruppel KM, Willison D, Kataoka H, Wang A, Zheng YW, Cornelissen I, Yin L, Xu SM, Coughlin SR (2005) Essential role for Galpha13 in endothelial cells during embryonic development. Proc Natl Acad Sci USA 102:8281–8286. doi:10.1073/pnas.0503326102

    Article  PubMed  CAS  Google Scholar 

  43. Shan D, Chen L, Wang D, Tan YC, Gu JL, Huang XY (2006) The G protein G alpha(13) is required for growth factor-induced cell migration. Dev Cell 10:707–718. doi:10.1016/j.devcel.2006.03.014

    Article  PubMed  CAS  Google Scholar 

  44. Shi CS, Sinnarajah S, Cho H, Kozasa T, Kehrl JH (2000) G13alpha-mediated PYK2 activation. PYK2 is a mediator of G13alpha-induced serum response element-dependent transcription. J Biol Chem 275:24470–24476. doi:10.1074/jbc.M908449199

    Article  PubMed  CAS  Google Scholar 

  45. Skeberdis VA, Chevaleyre V, Lau CG, Goldberg JH, Pettit DL, Suadicani SO, Lin Y, Bennett MV, Yuste R, Castillo PE, Zukin RS (2006) Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9:501–510. doi:10.1038/nn1664

    Article  PubMed  CAS  Google Scholar 

  46. Spiegelberg BD, Hamm HE (2005) G betagamma binds histone deacetylase 5 (HDAC5) and inhibits its transcriptional co-repression activity. J Biol Chem 280:41769–41776. doi:10.1074/jbc.M504066200

    Article  PubMed  CAS  Google Scholar 

  47. Strathmann MP, Simon MI (1991) G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. Proc Natl Acad Sci USA 88:5582–5586. doi:10.1073/pnas.88.13.5582

    Article  PubMed  CAS  Google Scholar 

  48. Ushio-Fukai M (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71:226–235. doi:10.1016/j.cardiores.2006.04.015

    Article  PubMed  CAS  Google Scholar 

  49. Vaiskunaite R, Kozasa T, Voyno-Yasenetskaya TA (2001) Interaction between the G alpha subunit of heterotrimeric G(12) protein and Hsp90 is required for G alpha(12) signaling. J Biol Chem 276:46088–46093. doi:10.1074/jbc.M108711200

    Article  PubMed  CAS  Google Scholar 

  50. Vanhauwe JF, Thomas TO, Minshall RD, Tiruppathi C, Li A, Gilchrist A, Yoon EJ, Malik AB, Hamm HE (2002) Thrombin receptors activate G(o) proteins in endothelial cells to regulate intracellular calcium and cell shape changes. J Biol Chem 277:34143–34149. doi:10.1074/jbc.M204477200

    Article  PubMed  CAS  Google Scholar 

  51. Voyno-Yasenetskaya TA, Pace AM, Bourne HR (1994) Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9:2559–2565

    PubMed  CAS  Google Scholar 

  52. Wang L, Fan C, Topol SE, Wang Q (2003) Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 302:1578–1581. doi:10.1126/science.1088477

    Article  PubMed  CAS  Google Scholar 

  53. Wang X, Tang X, Li M, Marshall J, Mao Z (2005) Regulation of neuroprotective activity of myocyte-enhancer factor 2 by cAMP-protein kinase A signaling pathway in neuronal survival. J Biol Chem 280:16705–16713. doi:10.1074/jbc.M501819200

    Article  PubMed  CAS  Google Scholar 

  54. Xu N, Voyno-Yasenetskaya T, Gutkind JS (1994) Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun 201:603–609. doi:10.1006/bbrc.1994.1744

    Article  PubMed  CAS  Google Scholar 

  55. Zhu D, Kosik KS, Meigs TE, Yanamadala V, Denker BM (2004) Galpha12 directly interacts with PP2A: evidence for Galpha12-stimulated PP2A phosphatase activity and dephosphorylation of microtubule-associated protein, tau. J Biol Chem 279:54983–54986. doi:10.1074/jbc.C400508200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. M. Cobbs, J. Han, L. Kedes, S. Khochbin, E. Olson, M. Rosner, and J. Xie for providing us with their constructs. This work was supported by National Institutes of Health Grants GM56159 and HL06078 and by a grant from the American Heart Association (to TVY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana A. Voyno-Yasenetskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Han, J., Profirovic, J. et al. Gα13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis. Angiogenesis 12, 1–15 (2009). https://doi.org/10.1007/s10456-008-9123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9123-3

Keywords

Navigation