Skip to main content

Advertisement

Log in

Anti-tumoral effect of active immunotherapy in C57BL/6 mice using a recombinant human VEGF protein as antigen and three chemically unrelated adjuvants

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Following the clinical success of Bevacizumab, a humanized monoclonal antibody that affects the interaction between vascular endothelial growth factor (VEGF) and its receptors, blocking tumor-induced angiogenesis has become one of the most important targets for the development of new cancer therapeutic drugs and procedures. Among the latter, therapeutic vaccination using VEGF as antigen presents itself as very attractive, with the potential of generating not only a growth factor blocking antibody response but also a cellular response against tumor cells and stromal elements, which appear to be a major source of tumor VEGF. In this paper, we report the development of a protein vaccine candidate, based on a human modified VEGF antigen that is expressed at high levels in E. coli. With respect to controls, immunization experiments in C57BL/6 mice using weekly doses of this antigen and three adjuvants of different chemical natures show that time for tumor development after subcutaneous injection of Melanoma B16-F10 cells increases, tumors that develop grow slower, and overall animal survival is higher. Immunization also prevents tumor development in some mice, making them resistant to second tumor challenges. Vaccination of mice with the human modified VEGF recombinant antigen produces antibodies against the human antigen and the homologous mouse VEGF molecule. We also show that sera from immunized mice block human VEGF-induced HUVEC proliferation. Finally, a possible contribution of T cell cytotoxicity to the overall anti-tumor effect is suggested from the results of vaccination experiments where CD8+ lymphocytes were impaired using neutralizing rat antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW (1991) The vascular endothelial growth factor family of polypeptides. J Cell Biochem 47:211–218

    Article  PubMed  CAS  Google Scholar 

  4. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20:4368–4380

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(suppl 3):11–16

    Article  PubMed  CAS  Google Scholar 

  6. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  7. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  8. Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  9. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  PubMed  CAS  Google Scholar 

  10. Posey JA, Ng TC, Yang B et al (2003) A phase I study of anti-kinase insert domaincontainingreceptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clin Cancer Res 9:1323–1332

    PubMed  CAS  Google Scholar 

  11. St CB, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  Google Scholar 

  12. Wei YQ, Wang QR, Zhao X et al (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6:1160–1166

    Article  PubMed  CAS  Google Scholar 

  13. Chen XY, Zhang W, Zhang W et al (2006) Vaccination with viable human umbilical vein endothelial cells prevents metastatic tumors by attack on tumor vasculature with both cellular and humoral immunity. Clin Cancer Res 12:5834–5840

    Article  PubMed  CAS  Google Scholar 

  14. Okaji Y, Tsuno NH, Kitayama J et al (2004) Vaccination with autologous endothelium inhibits angiogenesis and metastasis of colon cancer through autoimmunity. Cancer Sci 95:85–90

    Article  PubMed  CAS  Google Scholar 

  15. Kamstock D, Elmslie R, Thamm D, Dow S (2007) Evaluation of a xenogeneic VEGF vaccine in dogs with soft tissue sarcoma. Cancer Immunol Immunother 56:1299–1309

    Article  PubMed  CAS  Google Scholar 

  16. Wei YQ, Huang MJ, Yang L et al (2001) Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci USA 98:11545–11550

    Article  PubMed  CAS  Google Scholar 

  17. Bequet-Romero M, Ayala M, Acevedo BE et al (2007) Prophylactic naked DNA vaccination with the human vascular endothelial growth factor induces an antitumor response in C57Bl/6 mice. Angiogenesis 10:23–34

    Article  PubMed  CAS  Google Scholar 

  18. Rad FH, Le BH, Paturance S et al (2007) VEGF kinoid vaccine, a therapeutic approach against tumor angiogenesis and metastases. Proc Natl Acad Sci USA 104:2837–2842

    Article  PubMed  CAS  Google Scholar 

  19. Li Y, Wang MN, Li H et al (2002) Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 195:1575–1584

    Article  PubMed  CAS  Google Scholar 

  20. Liu JY, Wei YQ, Yang L et al (2003) Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 102:1815–1823

    Article  PubMed  CAS  Google Scholar 

  21. Pan J, Heiser A, Marget M, Steinmann J, Kabelitz D (2005) Enhanced antimetastatic effect of fetal liver kinase 1 extracellular domain and interferon-gamma fusion gene-modified dendritic cell vaccination. Gene Ther 12:742–750

    Article  PubMed  CAS  Google Scholar 

  22. Sambrok J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  23. Yero D, Pajon R, Niebla O et al (2006) Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli. Biotechnol Appl Biochem 44:27–34

    Article  PubMed  CAS  Google Scholar 

  24. Jaffe EA, Grulich J, Weksler BB, Hampel G, Watanabe K (1987) Correlation between thrombin-induced prostacyclin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells. J Biol Chem 262:8557–8565

    PubMed  CAS  Google Scholar 

  25. Morera Y, Lamdan H, Bequet M et al (2006) Biologically active vascular endothelial growth factor as a bacterial recombinant glutathione S-transferase fusion protein. Biotechnol Appl Biochem 44:45–53

    Article  PubMed  CAS  Google Scholar 

  26. Gonzalez G, Crombet T, Neninger E, Viada C, Lage A (2007) Therapeutic vaccination with epidermal growth factor (EGF) in advanced lung cancer: analysis of pooled data from three clinical trials. Hum Vaccin 3:8–13

    PubMed  CAS  Google Scholar 

  27. Shen BQ, Lee DY, Gerber HP, Keyt BA, Ferrara N, Zioncheck TF (1998) Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J Biol Chem 273:29979–29985

    Article  PubMed  CAS  Google Scholar 

  28. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  30. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  PubMed  CAS  Google Scholar 

  31. Estevez F, Carr A, Solorzano L et al (1999) Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP). Vaccine 18:190–197

    Article  PubMed  CAS  Google Scholar 

  32. Davidsen J, Rosenkrands I, Christensen D et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718:22–31

    Article  PubMed  CAS  Google Scholar 

  33. Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E501–E507

    Article  PubMed  Google Scholar 

  34. Mesa C, de LJ, Rigley K, Fernandez LE (2004) Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation. Vaccine 22:3045–3052

    Article  PubMed  CAS  Google Scholar 

  35. Mesa C, de LJ, Fernandez LE (2006) Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for generation of CTL responses to peptide and protein antigens. Vaccine 24:2692–2699

    Article  PubMed  CAS  Google Scholar 

  36. Torrens I, Mendoza O, Batte A et al (2005) Immunotherapy with CTL peptide and VSSP eradicated established human papillomavirus (HPV) type 16 E7-expressing tumors. Vaccine 23:5768–5774

    Article  PubMed  CAS  Google Scholar 

  37. Lindblad EB, Elhay MJ, Silva R, Appelberg R, Andersen P (1997) Adjuvant modulation of immune responses to tuberculosis subunit vaccines. Infect Immun 65:623–629

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge V. Gavilondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morera, Y., Bequet-Romero, M., Ayala, M. et al. Anti-tumoral effect of active immunotherapy in C57BL/6 mice using a recombinant human VEGF protein as antigen and three chemically unrelated adjuvants. Angiogenesis 11, 381–393 (2008). https://doi.org/10.1007/s10456-008-9121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9121-5

Keywords

Navigation