Skip to main content

Advertisement

Log in

Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The notch-signalling pathway regulates cell fate and differentiation through cell–cell communication. In recent years, several in vitro and in vivo studies have demonstrated that notch-signalling functions as a negative feedback mechanism downstream of the VEGF-signalling pathway that acts to finely shape the vascular network. Notch activation by the Jagged-1 and Delta-like 4 ligands regulates different steps of blood vessel development ranging from proliferation and survival of endothelial cells, to vessel branching and arterial–venous differentiation. In addition, heterotypic notch signalling from endothelial cells to pericytes is critical for vessel stabilization and maturation. Interestingly, several studies have demonstrated that blocking the notch pathway can delay tumour growth. Unexpectedly however, tumour growth inhibition by Notch was caused by an increased number of non-functional vessels, which resulted in poor tumour perfusion. This approach of modulating notch signalling, combined with the extended knowledge acquired on the basic vascular role of notch signalling, will aid the development of treatments targetting human pathologies such as tissue ischaemia and solid tumour formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  PubMed  CAS  Google Scholar 

  2. Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136

    Article  PubMed  CAS  Google Scholar 

  3. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  PubMed  CAS  Google Scholar 

  4. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  PubMed  CAS  Google Scholar 

  5. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol 194(3):237–255

    Article  PubMed  CAS  Google Scholar 

  6. Chitnis A (2006) Why is delta endocytosis required for effective activation of notch? Dev Dyn 235(4):886–894

    Article  PubMed  CAS  Google Scholar 

  7. Le Borgne R, Bardin A, Schweisguth F (2005) The roles of receptor and ligand endocytosis in regulating notch signaling. Development 132(8):1751–1762

    Article  PubMed  CAS  Google Scholar 

  8. Le Borgne R, Schweisguth F (2003) Notch signaling: endocytosis makes delta signal better. Curr Biol 13(7):R273–R275

    Article  PubMed  CAS  Google Scholar 

  9. Wilkin MB, Baron M (2005) Endocytic regulation of notch activation and down-regulation (review). Mol Membr Biol 22(4):279–289

    Article  PubMed  CAS  Google Scholar 

  10. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A et al (2003) The notch ligand delta1 is sequentially cleaved by an ADAM protease and {gamma}-secretase. Proc Natl Acad Sci U S A

  11. Ikeuchi T, Sisodia SS (2003) The notch ligands, delta1 and jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem 278(10):7751–7754

    Article  PubMed  CAS  Google Scholar 

  12. LaVoie MJ, Selkoe DJ (2003) The notch ligands, jagged and delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278(36):34427–34437

    Article  PubMed  CAS  Google Scholar 

  13. Martinez Arias A, Zecchini V, Brennan K (2002) CSL-independent notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12(5):524–533

    Article  PubMed  Google Scholar 

  14. Morel V, Schweisguth F (2000) Repression by suppressor of hairless and activation by notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev 14(3):377–388

    PubMed  CAS  Google Scholar 

  15. Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    Article  PubMed  CAS  Google Scholar 

  16. Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P (2001) Novel notch alleles reveal a deltex-dependent pathway repressing neural fate. Curr Biol 11(22):1729–1738

    Article  PubMed  CAS  Google Scholar 

  17. Ross DA, Kadesch T (2004) Consequences of notch-mediated induction of jagged1. Exp Cell Res 296(2):173–182

    Article  PubMed  CAS  Google Scholar 

  18. Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S et al (1998) Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 18(4):2230–2239

    PubMed  CAS  Google Scholar 

  19. Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C et al (2007) Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem 282(39):28991–29001

    Article  PubMed  CAS  Google Scholar 

  20. Okajima T, Irvine KD (2002) Regulation of notch signaling by O-linked fucose. Cell 111(6):893–904

    Article  PubMed  CAS  Google Scholar 

  21. Stanley P (2007) Regulation of notch signaling by glycosylation. Curr Opin Struct Biol 17(5):530–535

    Article  PubMed  CAS  Google Scholar 

  22. Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci U S A 100(9):5234–5239

    Article  PubMed  CAS  Google Scholar 

  23. Haltiwanger RS, Stanley P (2002) Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 1573(3):328–335

    PubMed  CAS  Google Scholar 

  24. Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16(2):927–942

    Article  PubMed  CAS  Google Scholar 

  25. Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL et al (2007) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res

  26. Llimargas M (1999) The Notch pathway helps to pattern the tips of the Drosophila tracheal branches by selecting cell fates. Development 126(11):2355–2364

    PubMed  CAS  Google Scholar 

  27. Wan S, Cato AM, Skaer H (2000) Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev Biol 217(1):153–165

    Article  PubMed  CAS  Google Scholar 

  28. Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J 19(8):1027–1029

    PubMed  CAS  Google Scholar 

  29. Hofmann JJ, Luisa Iruela-Arispe M (2006) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns

  30. Karsan A (2005) The role of notch in modeling and maintaining the vasculature. Can J Physiol Pharmacol 83(1):14–23

    Article  PubMed  CAS  Google Scholar 

  31. Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL (2007) Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol 51(8):715–721

    Article  PubMed  Google Scholar 

  32. Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D (2001) Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69(2–3):135–144

    Article  PubMed  CAS  Google Scholar 

  33. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14(11):1313–1318

    PubMed  CAS  Google Scholar 

  34. Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122(7):2251–2259

    PubMed  CAS  Google Scholar 

  35. Yoneya T, Tahara T, Nagao K, Yamada Y, Yamamoto T, Osawa M et al (2001) Molecular cloning of delta-4, a new mouse and human Notch ligand. J Biochem (Tokyo) 129(1):27–34

    CAS  Google Scholar 

  36. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352

    PubMed  CAS  Google Scholar 

  37. Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111(14):1826–1832

    Article  PubMed  CAS  Google Scholar 

  38. Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98(10):5643–5648

    Article  PubMed  CAS  Google Scholar 

  39. Hrabe de Angelis M, McIntyre J, II, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386(6626):717–721

  40. Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730

    Article  PubMed  CAS  Google Scholar 

  41. Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18(20):2474–2478

    Article  PubMed  CAS  Google Scholar 

  42. Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101(45):15949–15954

    Article  PubMed  CAS  Google Scholar 

  43. Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev

  44. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  PubMed  CAS  Google Scholar 

  45. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  PubMed  CAS  Google Scholar 

  46. Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C, Sakai T et al (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121(10):3291–3301

    PubMed  CAS  Google Scholar 

  47. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911

    Article  PubMed  CAS  Google Scholar 

  48. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371

    Article  PubMed  CAS  Google Scholar 

  49. Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23(1):14–25

    Article  PubMed  Google Scholar 

  50. Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL (2005) Up-regulation of Delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65(19):8690–8697

    Article  PubMed  CAS  Google Scholar 

  51. Williams CK, Li JL, Murga M, Harris AL, Tosato G (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107(3):931–939

    Article  PubMed  CAS  Google Scholar 

  52. Holderfield MT, Henderson Anderson AM, Kokubo H, Chin MT, Johnson RL, Hughes CC (2006) HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun

  53. Taylor KL, Henderson AM, Hughes CC (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 64(3):372–383

    Article  PubMed  CAS  Google Scholar 

  54. Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. Faseb J 20(7):1009–1011

    Article  PubMed  CAS  Google Scholar 

  55. Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R et al (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res

  56. Noseda M, Niessen K, McLean G, Chang L, Karsan A (2005) Notch-dependent cell cycle arrest is associated with downregulation of minichromosome maintenance proteins. Circ Res 97(2):102–104

    Article  PubMed  CAS  Google Scholar 

  57. Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA et al (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382

    Article  PubMed  CAS  Google Scholar 

  58. MacKenzie F, Duriez P, Wong F, Noseda M, Karsan A (2003) Notch4 inhibits endothelial apoptosis via RBP-Jkappa-dependent and -independent pathways. J Biol Chem

  59. Gerhardt H, Betsholtz C (2005) How do endothelial cells orientate? Exs (94):3–15

  60. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed  CAS  Google Scholar 

  61. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature

  62. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104(9):3219–3224

    Article  PubMed  CAS  Google Scholar 

  63. Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A

  64. Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844

    Article  PubMed  CAS  Google Scholar 

  65. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784

    Article  PubMed  CAS  Google Scholar 

  66. Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524

    Article  PubMed  CAS  Google Scholar 

  67. Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23(10):912–923

    Article  PubMed  CAS  Google Scholar 

  68. Endo Y, Osumi N, Wakamatsu Y (2002) Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129(4):863–873

    PubMed  CAS  Google Scholar 

  69. Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948

    Article  PubMed  CAS  Google Scholar 

  70. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J 23(5):1155–1165

    Article  PubMed  CAS  Google Scholar 

  71. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA et al (2001) Notch signaling is required for arterial–venous differentiation during embryonic vascular development. Development 128(19):3675–3683

    PubMed  CAS  Google Scholar 

  72. Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414(6860):216–220

    Article  PubMed  CAS  Google Scholar 

  73. Diez H, Fischer A, Winkler A, Hu CJ, Hatzopoulos AK, Breier G et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313(1):1–9

    Article  PubMed  CAS  Google Scholar 

  74. Iso T, Maeno T, Oike Y, Yamazaki M, Doi H, Arai M et al (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun

  75. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104

    Article  PubMed  CAS  Google Scholar 

  76. Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A 102(28):9884–9889

    Article  PubMed  CAS  Google Scholar 

  77. Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100(3):363–371

    Article  PubMed  CAS  Google Scholar 

  78. Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y et al (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100(1):70–78

    Article  PubMed  CAS  Google Scholar 

  79. Sims DE (1986) The pericyte—a review. Tissue Cell 18(2):153–174

    Article  PubMed  CAS  Google Scholar 

  80. von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629

    Article  Google Scholar 

  81. Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T et al (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15(5):867–877

    Article  PubMed  CAS  Google Scholar 

  82. Wang T, Baron M, Trump D (2007) An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol

  83. Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S (2006) CADASIL: a critical look at a Notch disease. Dev Neurosci 28(1–2):5–12

    Article  PubMed  CAS  Google Scholar 

  84. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735

    Article  PubMed  CAS  Google Scholar 

  85. Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M et al (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253

    Article  PubMed  CAS  Google Scholar 

  86. Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R et al (2007) Inhibition of Dll4 mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood

  87. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  PubMed  CAS  Google Scholar 

  88. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173

    Article  PubMed  CAS  Google Scholar 

  89. Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA et al (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109(11):1354–1358

    Article  PubMed  Google Scholar 

  90. Donovan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12(18):1605–1610

    Article  PubMed  CAS  Google Scholar 

  91. Borzychowski AM, Sargent IL, Redman CW (2006) Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 11(5):309–316

    Article  PubMed  CAS  Google Scholar 

  92. Cobellis L, Mastrogiacomo A, Federico E, Schettino MT, De Falco M, Manente L et al (2007) Distribution of Notch protein members in normal and preeclampsia-complicated placentas. Cell Tissue Res 330(3):527–534

    Article  PubMed  CAS  Google Scholar 

  93. Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767

    Article  PubMed  CAS  Google Scholar 

  94. Patel NS, Dobbie MS, Rochester M, Steers G, Poulsom R, Le Monnier K et al (2006) Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res 12(16):4836–4844

    Article  PubMed  CAS  Google Scholar 

  95. Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037

    Article  PubMed  CAS  Google Scholar 

  96. Ozawa MG, Yao VJ, Chanthery YH, Troncoso P, Uemura A, Varner AS et al (2005) Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 104(10):2104–2115

    Article  PubMed  CAS  Google Scholar 

  97. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000

    PubMed  Google Scholar 

  98. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H et al (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8(1):13–23

    Article  PubMed  CAS  Google Scholar 

  99. Shih Ie M, Wang TL (2007) Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67(5):1879–1882

    Article  PubMed  Google Scholar 

  100. Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA et al (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64(21):7794–7800

    Article  PubMed  CAS  Google Scholar 

  101. O’Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al (2006) Activating Notch1 mutations in mouse models of T-ALL. Blood 107(2):781–785

    Article  PubMed  CAS  Google Scholar 

  102. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963

    Article  PubMed  Google Scholar 

  103. Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087

    Article  PubMed  CAS  Google Scholar 

  104. Sainson RC, Harris AL (2007) Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med 13(9):389–395

    Article  PubMed  CAS  Google Scholar 

  105. Lu C, Kamat AA, Lin YG, Merritt WM, Landen CN, Kim TJ et al (2007) Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma. Clin Cancer Res 13(14):4209–4217

    Article  PubMed  CAS  Google Scholar 

  106. Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40

    Article  PubMed  CAS  Google Scholar 

  107. Fung E, Tang SM, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA et al (2007) Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation 115(23):2948–2956

    Article  PubMed  CAS  Google Scholar 

  108. Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12:4298–4314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of A.L.H is supported by the Cancer Research-UK. We thank Dr. Seema Grewal for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian L. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainson, R.C.A., Harris, A.L. Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis 11, 41–51 (2008). https://doi.org/10.1007/s10456-008-9098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9098-0

Keywords

Navigation