Skip to main content
Log in

Netrins and UNC5 receptors in angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Both neuronal and vascular development require guidance to establish a precise branching pattern of these systems in the vertebrate body. Several molecules implicated in axon navigation have also been shown to regulate vessel sprouting. Among these guidance cues, Netrins constitute a family of diffusible molecules with a bifuncional role in axon pathfinding. Recent findings implicate Netrins in other developmental processes, including vascular development. We here review recent studies and discuss the possible dual function of Netrins and its receptors during branching of blood vessels in developmental and pathological angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–842

    Article  PubMed  CAS  Google Scholar 

  2. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  PubMed  CAS  Google Scholar 

  3. Arakawa H (2004) Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer 4:978–987

    Article  PubMed  CAS  Google Scholar 

  4. Baker KA, Moore SW, Jarjour AA, Kennedy TE (2006) When a diffusible axon guidance cue stops diffusing: roles for netrins in adhesion and morphogenesis. Curr Opin Neurobiol 16:529–534

    Article  PubMed  CAS  Google Scholar 

  5. Bernet A, Mehlen P (2007) Dependence receptors: when apoptosis controls tumor progression. Bull Cancer 94:E12–E17

    PubMed  Google Scholar 

  6. Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    Article  PubMed  Google Scholar 

  7. Chan SS, Zheng H, Su MW, Wilk R, Killeen MT, Hedgecock EM, Culotti JG (1996) UNC-40, a C. elegans homolog of DCC (deleted in colorectal cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87:187–195

    Article  PubMed  CAS  Google Scholar 

  8. Chisholm A, Tessier-Lavigne M (1999) Conservation and divergence of axon guidance mechanisms. Curr Opin Neurobiol 9:603–615

    Article  PubMed  CAS  Google Scholar 

  9. Cirulli V, Yebra M (2007) Netrins: beyond the brain. Nat Rev Mol Cell Biol 8:296–306

    Article  PubMed  CAS  Google Scholar 

  10. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    Article  PubMed  CAS  Google Scholar 

  11. Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314:107–117

    Article  PubMed  Google Scholar 

  12. Downs KM (2003) Florence Sabin and the mechanism of blood vessel lumenization during vasculogenesis. Microcirculation 10:5–25

    Article  PubMed  CAS  Google Scholar 

  13. Eguchi M, Masuda H, Asahara T (2007) Endothelial progenitor cells for postnatal vasculogenesis. Clin Exp Nephrol 11:18–25

    Article  PubMed  Google Scholar 

  14. Eichmann A, Makinen T, Alitalo K (2005) Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 19:1013–1021

    Article  PubMed  CAS  Google Scholar 

  15. Ema M, Rossant J (2003) Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med 13:254–259

    Article  PubMed  CAS  Google Scholar 

  16. Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, Simons J, Bronson RT, Gordon JI, Tessier-Lavigne M, Weinberg RA (1997) Phenotype of mice lacking functional deleted in colorectal cancer (Dcc) gene. Nature 386:796–804

    Article  PubMed  CAS  Google Scholar 

  17. Fearon ER (1996) DCC: is there a connection between tumorigenesis and cell guidance molecules? Biochim Biophys Acta 1288:M17–M23

    PubMed  Google Scholar 

  18. Fearon ER, Ekstrand BC, Hu G, Pierceall WE, Reale MA, Bigner SH (1994) Studies of the deleted in colorectal cancer gene in normal and neoplastic tissues. Cold Spring Harb Symp Quant Biol 59:637–643

    PubMed  CAS  Google Scholar 

  19. Fearon ER, Pierceall WE (1995) The deleted in colorectal cancer (DCC) gene: a candidate tumour suppressor gene encoding a cell surface protein with similarity to neural cell adhesion molecules. Cancer Surv 24:3–17

    PubMed  CAS  Google Scholar 

  20. Fischer C, Schneider M, Carmeliet P (2006) Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol 176:157–212

    PubMed  CAS  Google Scholar 

  21. Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  PubMed  CAS  Google Scholar 

  22. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  23. Goi T, Yamaguchi A, Nakagawara G, Urano T, Shiku H, Furukawa K (1998) Reduced expression of deleted colorectal carcinoma (DCC) protein in established colon cancers. Br J Cancer 77:466–471

    PubMed  CAS  Google Scholar 

  24. Hedgecock EM, Culotti JG, Hall DH (1990) The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4:61–85

    Article  PubMed  CAS  Google Scholar 

  25. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97:927–941

    Article  PubMed  CAS  Google Scholar 

  26. Hopker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C (1999) Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401:69–73

    Article  PubMed  CAS  Google Scholar 

  27. Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130:5281–5290

    Article  PubMed  CAS  Google Scholar 

  28. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456

    Article  PubMed  CAS  Google Scholar 

  29. Keleman K, Dickson BJ (2001) Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32:605–617

    Article  PubMed  CAS  Google Scholar 

  30. Kennedy TE, Serafini T, de la Torre JR, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    Article  PubMed  CAS  Google Scholar 

  31. Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16:535–548

    Article  PubMed  CAS  Google Scholar 

  32. Kolodziej PA, Timpe LC, Mitchell KJ, Fried SR, Goodman CS, Jan LY, Jan YN (1996) Frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87:197–204

    Article  PubMed  CAS  Google Scholar 

  33. Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Williams NN, Kaiser LR, Croce CM (2003) Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphorin 3B in non-small cell lung cancer. Cancer Res 63:3352–3355

    PubMed  CAS  Google Scholar 

  34. Larrivee B, Freitas C, Trombe M, Lv X, Delafarge B, Yuan L, Bouvree K, Breant C, Del Toro R, Brechot N, Germain S, Bono F, Dol F, Claes F, Fischer C, Autiero M, Thomas JL, Carmeliet P, Tessier-Lavigne M, Eichmann A (2007) Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 21:2433–2447

    Article  PubMed  CAS  Google Scholar 

  35. Latil A, Chene L, Cochant-Priollet B, Mangin P, Fournier G, Berthon P, Cussenot O (2003) Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int J Cancer 103:306–315

    Article  PubMed  CAS  Google Scholar 

  36. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Breant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432:179–186

    Article  PubMed  CAS  Google Scholar 

  37. Mazelin L, Bernet A, Bonod-Bidaud C, Pays L, Arnaud S, Gespach C, Bredesen DE, Scoazec JY, Mehlen P (2004) Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature 431:80–84

    Article  PubMed  CAS  Google Scholar 

  38. Mehlen P, Fearon ER (2004) Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 22:3420–3428

    Article  PubMed  CAS  Google Scholar 

  39. Meyerhardt JA, Caca K, Eckstrand BC, Hu G, Lengauer C, Banavali S, Look AT, Fearon ER (1999) Netrin-1: interaction with deleted in colorectal cancer (DCC) and alterations in brain tumors and neuroblastomas. Cell Growth Differ 10:35–42

    PubMed  CAS  Google Scholar 

  40. Nakayama K, Inokuchi K, Dan K (2005) Hypermethylation of the putative tumor-suppressor genes DCC, p51/63 and O6-methylguanine-DNA methyltransferase (MGMT) and loss of their expressions in cell lines of hematological malignancies. J Nippon Med Sch 72:270–277

    Article  PubMed  CAS  Google Scholar 

  41. Nguyen A, Cai H (2006) Netrin-1 induces angiogenesis via a DCC-dependent ERK1/2-eNOS feed-forward mechanism. Proc Natl Acad Sci USA 103:6530–6535

    Article  PubMed  CAS  Google Scholar 

  42. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970

    PubMed  CAS  Google Scholar 

  43. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, Kuo CJ, Li DY (2004) The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci USA 101:16210–16215

    Article  PubMed  CAS  Google Scholar 

  44. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15

    Article  PubMed  CAS  Google Scholar 

  45. Peng HQ, Bailey D, Bronson D, Goss PE, Hogg D (1995) Loss of heterozygosity of tumor suppressor genes in testis cancer. Cancer Res 55:2871–2875

    PubMed  CAS  Google Scholar 

  46. Przyborski SA, Knowles BB, Ackerman SL (1998) Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125:41–50

    PubMed  CAS  Google Scholar 

  47. Reyes-Mugica M, Rieger-Christ K, Ohgaki H, Ekstrand BC, Helie M, Kleinman G, Yahanda A, Fearon ER, Kleihues P, Reale MA (1997) Loss of DCC expression and glioma progression. Cancer Res 57:382–386

    PubMed  CAS  Google Scholar 

  48. Schirmer SH, van Royen N (2004) Stimulation of collateral artery growth: a potential treatment for peripheral artery disease. Expert Rev Cardiovasc Ther 2:581–588

    Article  PubMed  Google Scholar 

  49. Sekido Y, Bader S, Latif F, Chen JY, Duh FM, Wei MH, Albanesi JP, Lee CC, Lerman MI, Minna JD (1996) Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci USA 93:4120–4125

    Article  PubMed  CAS  Google Scholar 

  50. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424

    Article  PubMed  CAS  Google Scholar 

  51. Stein E, Zou Y, Poo M, Tessier-Lavigne M (2001) Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291:1976–1982

    Article  PubMed  CAS  Google Scholar 

  52. Strohmeyer D, Langenhof S, Ackermann R, Hartmann M, Strohmeyer T, Schmidt B (1997) Analysis of the DCC tumor suppressor gene in testicular germ cell tumors: mutations and loss of expression. J Urol 157:1973–1976

    Article  PubMed  CAS  Google Scholar 

  53. Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H (2003) p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5:216–223

    Article  PubMed  CAS  Google Scholar 

  54. Tarafa G, Villanueva A, Farre L, Rodriguez J, Musulen E, Reyes G, Seminago R, Olmedo E, Paules AB, Peinado MA, Bachs O, Capella G (2000) DCC and SMAD4 alterations in human colorectal and pancreatic tumor dissemination. Oncogene 19:546–555

    Article  PubMed  CAS  Google Scholar 

  55. Tomizawa Y, Sekido Y, Kondo M, Gao B, Yokota J, Roche J, Drabkin H, Lerman MI, Gazdar AF, Minna JD (2001) Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci USA 98:13954–13959

    Article  PubMed  CAS  Google Scholar 

  56. Vikram B (1997) The DCC protein and colon cancer. N Engl J Med 336:1456 (author reply 1456–1457)

    CAS  Google Scholar 

  57. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, Thorne T, Silver M, Thomas KR, Chien CB, Losordo DW, Li DY (2006) Netrins promote developmental and therapeutic angiogenesis. Science 313:640–644

    Article  PubMed  CAS  Google Scholar 

  58. Xiang R, Davalos AR, Hensel CH, Zhou XJ, Tse C, Naylor SL (2002) Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res 62:2637–2643

    PubMed  CAS  Google Scholar 

  59. Yang Y, Zou L, Wang Y, Xu KS, Zhang JX, Zhang JH (2007) Axon guidance cue Netrin-1 has dual function in angiogenesis. Cancer Biol Ther 6:743–748

    Article  PubMed  CAS  Google Scholar 

  60. Yebra M, Montgomery AM, Diaferia GR, Kaido T, Silletti S, Perez B, Just ML, Hildbrand S, Hurford R, Florkiewicz E, Tessier-Lavigne M, Cirulli V (2003) Recognition of the neural chemoattractant Netrin-1 by integrins alpha6beta4 and alpha3beta1 regulates epithelial cell adhesion and migration. Dev Cell 5:695–707

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Eichmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, C., Larrivée, B. & Eichmann, A. Netrins and UNC5 receptors in angiogenesis. Angiogenesis 11, 23–29 (2008). https://doi.org/10.1007/s10456-008-9096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9096-2

Keywords

Navigation