Skip to main content
Log in

Thymosin β4 and angiogenesis: modes of action and therapeutic potential

  • Review Article
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Here we review the mechanisms by which Thymosin β4 (Tβ4) regulates angiogenesis, its role in processes, such as wound healing and tumour progression and we discuss in more detail the role of Tβ4 in the cardiovascular system and significant recent findings implicating Tβ4 as a potential therapeutic agent for ischaemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goldstein AL, Slater FD, White A (1966) Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Natl Acad Sci USA 56:1010–1017

    Article  PubMed  CAS  Google Scholar 

  2. Huff T, Muller C, Otto A, Netzker R, Hannappel E (2001) β-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33:205–220

    Article  PubMed  CAS  Google Scholar 

  3. Sanders MC, Goldstein AL, Wang Y (1992) Thymosin {beta}4 (Fx Peptide) is a potent regulator of actin polymerization in living cells. PNAS 89:4678–4682

    Article  PubMed  CAS  Google Scholar 

  4. Stanka Stoeva SHWV (1997) A novel β-thymosin from the sea urchin: extending the phylogenetic distribution of β-thymosins from mammals to echinoderms. J Pept Sci 3:282–290

    Article  Google Scholar 

  5. Low TL, Hu SK, Goldstein AL (1981) Complete amino acid sequence of bovine thymosin β4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA 78:1162–1166

    Article  PubMed  CAS  Google Scholar 

  6. Low TL, Goldstein AL (1982) Chemical characterization of thymosin beta 4. J Biol Chem 257:1000–1006

    PubMed  CAS  Google Scholar 

  7. Goldstein AL, Hannappel E, Kleinman HK (2005) Thymosin β4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 11:421–429

    Article  PubMed  CAS  Google Scholar 

  8. Lere B, Massimo L, Bruce RZ (1998) Thymosin β15 expression in tumor cell lines with varying metastatic potential. Clin Exp Metastasis 16:227–233

    Article  Google Scholar 

  9. Bao L, Loda M, Janmey PA, Stewart R, nand-Apte B, Zetter BR (1996) Thymosin β 15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med 2:1322–1328

    Article  PubMed  CAS  Google Scholar 

  10. Sun HQ, Kwiatkowska K, Yin HL (1995) Actin monomer binding proteins. Curr Opin Cell Biol 7:102–110

    Article  PubMed  CAS  Google Scholar 

  11. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304:743–746

    Article  PubMed  CAS  Google Scholar 

  12. Lappalainen P, Drubin D (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82

    Article  PubMed  CAS  Google Scholar 

  13. Faix J, Rottner K (2006) The making of filopodia. Curr Opin Cell Biol 18:18–25

    Article  PubMed  CAS  Google Scholar 

  14. Chen H, Bernstein B, Bamburg J (2000) Regulating actin-filament dynamics in vivo. Trends Biol Sci 25:19–23

    Article  CAS  Google Scholar 

  15. Van Troys M, Dewitte D, Goethals M, Carlier MF, Vandekerckhove J, AMpe C (1996) The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J 15:201–210

    PubMed  Google Scholar 

  16. Malinda KM, Sidhu GS, Banaudha KK, Gaddipati JP, Maheshwari RK, Goldstein AL, Kleinman HK (1998) Thymosin {alpha}1 stimulates endothelial cell migration, angiogenesis, and wound healing. J Immunol 160:1001–1006

    PubMed  CAS  Google Scholar 

  17. Mu H, Ohashi R, Yang H, Wang X, Li M, Lin P, Yao Q, Chen C (2006) Thymosin beta10 inhibits cell migration and capillary-like tube formation of human coronary artery endothelial cells. Cell Motil Cytoskeleton 63(4):222–230

    Article  PubMed  CAS  Google Scholar 

  18. Koutrafouri V, Leoniadis L, Avgoustakis K, Livianou E, Czarnecki J, Ithakissios D, Evangelatos G (2001) Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim Biophys Acta 1568:60–66

    PubMed  CAS  Google Scholar 

  19. Koutrafouri V, Leondiadis L, Ferderigos N, Avgoustakis K, Livaniou E, Evangelatos GP, Ithakissios DS (2003) Synthesis and angiogenetic activity in the chick chorioallantoic membrane model of thymosin β15. Peptides 24:107–115

    Article  PubMed  CAS  Google Scholar 

  20. Lee SH, Son MJ, Oh SH, Rho SB, Park K, Kim YJ, Park MS, Lee JH (2005) Thymosin β10 inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer Res 65:137–148

    PubMed  CAS  Google Scholar 

  21. Philp D, Huff T, Gho YS, Hannappel E, Kleinman HK (2003) The actin binding site on thymosin β4 promotes angiogenesis. FASEB J 17:2103–2105

    PubMed  CAS  Google Scholar 

  22. Gomez-Marquez J, del Amo F, Carpintero P, Anadon R (1996) High levels of mouse thymosin β4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta 1306:187–193

    PubMed  Google Scholar 

  23. Carpintero P, Franco dA, Anadon R, Gomez-Marquez J (1996) Thymosin β10 mRNA expression during early postimplantation mouse development. FEBS Lett 394:103–106

    Article  PubMed  CAS  Google Scholar 

  24. Hall AK (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer 48:672–677

    Article  PubMed  CAS  Google Scholar 

  25. Grant D, Kinsella J, Kibbey M, LaFlamme S, Burbelo P, Goldstein A, Leinman H (1995) Matrigel induces thymosin(β4 gene in differentiating endothelial cells. J Cell Sci 108:3685–3694

    PubMed  CAS  Google Scholar 

  26. Malinda K, Goldstein A, Kleinman H (1997) Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 11:474–481

    PubMed  CAS  Google Scholar 

  27. Grant DS, Rose W, Yaen C, Goldstein A, Martinez J, Kleinman H (1999) Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3:125–135

    Article  PubMed  CAS  Google Scholar 

  28. Malinda K, Sidhu G, Mani H, Banaudha K, Mashewari R, Goldstein A, Kleinman H (1999) Thymosin β4 accelerates wound healing. J Invest Dermatol 113:364–368

    Article  PubMed  CAS  Google Scholar 

  29. Cha HJ, Jeong MJ, Kleinman HK (2003) Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95:1674–1680

    PubMed  CAS  Google Scholar 

  30. Grillon C, Rieger K, Bakala J, Schott D, Morgat JL, Hannappel E, Voelter W, Lenfant M (1990) Involvement of thymosin β4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett 274:30–34

    Article  PubMed  CAS  Google Scholar 

  31. Rieger KJ, Saez-Servent N, Papet MP, Wdzieczak-Bakala J, Morgat JL, Thierry J, Voelter W, Lenfant M (1993) Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem J 296(Pt 2):373–378

    PubMed  CAS  Google Scholar 

  32. Cavasin MA, Rhaleb NE, Yang XP, Carretero OA (2004) Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension 43:1140–1145

    Article  PubMed  CAS  Google Scholar 

  33. Liu JM, Lawrence F, Kovacevic M, Bignon J, Papadimitriou E, Lallemand JY, Katsoris P, Potier P, Fromes Y, Wdzieczak-Bakala J (2003) The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood 101:3014–3020

    Article  PubMed  CAS  Google Scholar 

  34. Bonnet D, Lemoine FM, Frobert Y, Bonnet ML, Baillou C, Najman A, Guigon M (1996) Thymosin(β4, inhibitor for normal hematopoietic progenitor cells. Exp Hematol 24:776–782

    PubMed  CAS  Google Scholar 

  35. Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Liden S, Jornvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237:86–92

    Article  PubMed  CAS  Google Scholar 

  36. Philp D, Badamchian M, Scheremeta B, Nguyen M, Goldstein A, Kleinman H (2003) Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen 11:19–24

    Article  PubMed  Google Scholar 

  37. Philp D, Goldstein AL, Kleinman HK (2004) Thymosin [beta]4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev 125:113–115

    Article  PubMed  CAS  Google Scholar 

  38. Sosne G, Chan C, Thai K, Kennedy M, Szliter E, Hazlett L, Kleinman H (2001) Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp Eye Res 72:605–608

    Article  PubMed  CAS  Google Scholar 

  39. Sosne G, Hafeez S, Greenberry AL, Kurpakus-Wheater M (2002) Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res 24:268–273

    Article  PubMed  Google Scholar 

  40. Sosne G, Siddiqi A, Kurpakus-Wheater M (2004) Thymosin-{beta}4 Inhibits Corneal Epithelial Cell Apoptosis after Ethanol Exposure In vitro. Invest Ophthalmol Vis Sci 45:1095–1100

    Article  PubMed  Google Scholar 

  41. Sosne G, Christopherson PL, Barrett RP, Fridman R (2005) Thymosin-{beta}4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci 46:2388–2395

    Article  PubMed  Google Scholar 

  42. Sosne G, Qiu P, Christopherson PL, Wheater MK (2007) Thymosin beta 4 suppression of corneal NF[kappa]B: a potential anti-inflammatory pathway. Exp Eye Res 84:663–669

    Article  PubMed  CAS  Google Scholar 

  43. Clark E, Golub T, Lander E, Hynes R (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  PubMed  CAS  Google Scholar 

  44. Ridley A (2000) Molecular switches in metastasis. Nature 406:466–467

    Article  PubMed  CAS  Google Scholar 

  45. Kobayashi T, Okada F, Fujii N, Tomita N, Ito S, Tazawa H, Ayoama T, Choi S, Shibita T, Fujita H, Hosokawa M (2002) Thymosin-β4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol 160:869–882

    PubMed  CAS  Google Scholar 

  46. Diamond DL, Zhang Y, Gaiger A, Smithgall M, Vedvick TS, Carter D (2003) Use of proteinchip(TM) array surface enhanced laser desorption/ionization time-of-flight mass spectrometry (seldi-tof ms) to identify thymosin [beta]-4, a differentially secreted protein from lymphoblastoid cell lines. J Am Soc Mass Spectrom 14:760–765

    Article  PubMed  CAS  Google Scholar 

  47. Wang W-S, Chen P-M, Hsiao H-L, Ju S-Y, Su Y (2003) Overexpression of the thymosin b-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene 22:3297–3306

    Article  PubMed  CAS  Google Scholar 

  48. Yamamoto T, Gotoh M, Kitajima M, Hirohashi S (1993) Thymosin [beta]-4 expression is correlated with metastatic capacity of colorectal carcinomas. Biochem Biophys Res Commun 193:706–710

    Article  PubMed  CAS  Google Scholar 

  49. Verghese-Nikolakaki S, Apostolikas N, Livaniou E, Ithakissios DS, Evangelatos GP (1996) Preliminary findings on the expression of thymosin beta-10 in human breast cancer. Br J Cancer 74:1441–1444

    PubMed  CAS  Google Scholar 

  50. Santelli G, Califano D, Chiappetta G, Vento MT, Bartoli PC, Zullo F, Trapasso F, Viglietto G, Fusco A (1999) Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am J Pathol 155:799–804

    PubMed  CAS  Google Scholar 

  51. Viglietto G, Califano D, Bruni P, Baldassarre G, Vento MT, Belletti B, Fedele M, Santelli G, Boccia A, Manzo G, Santoro M, Fusco A (1999) Regulation of thymosin beta10 expression by TSH and other mitogenic signals in the thyroid gland and in cultured thyrocytes. Eur J Endocrinol 140:597–607

    Article  PubMed  CAS  Google Scholar 

  52. Lee S-H, Zhang W, Choi J-J, Cho Y-S, Lee S-H, Kim J-W, Hu L, Xu J, Liu J, Lee J-H (2001) Overexpression of the thymosin β-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 20:6700–6706

    Article  PubMed  CAS  Google Scholar 

  53. Kusinski M, Wdzieczak-Bakala J, Liu JM, Bignon J, Kuzdak K (2006) AcSDKP: a new potential marker of malignancy of the thyroid gland. Langenbecks Arch Surg 391:9–12

    Article  PubMed  Google Scholar 

  54. Smart N, Hill AA, Cross JC, Riley PR (2002) A differential screen for putative targets of the bHLH transcription factor Hand1 in cardiac morphogenesis. Mech Dev 119:S65–S71

    Article  PubMed  Google Scholar 

  55. Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D (2004) Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432:466–472

    Article  PubMed  CAS  Google Scholar 

  56. Smart N, Risebro CA, Melville AAD, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182

    Article  PubMed  CAS  Google Scholar 

  57. Dathe V, Brand-Saberi B (2004) Expression of thymosin beta4 during chick development. Anat Embryol (Berl) 208:27–32

    Article  CAS  Google Scholar 

  58. Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121:4203–4214

    PubMed  CAS  Google Scholar 

  59. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  60. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  61. von Kodolitsch Y, Franzen O, Lund GK, Koschyk DH, Ito WD, Meinertz T (2004) Coronary artery anomalies Part I: recent insights from molecular embryology. Z Kardiol 93:929–937

    Article  Google Scholar 

  62. Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC (2002) The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J 29:255–261

    PubMed  Google Scholar 

  63. Manasek FJ (1969) Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol 22:333–348

    PubMed  CAS  Google Scholar 

  64. Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168

    Article  PubMed  CAS  Google Scholar 

  65. Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, Atencia G, Macias D, Perez-Pomares JM (2002) Cellular precursors of the coronary arteries. Tex Heart Inst J 29:243–249

    PubMed  Google Scholar 

  66. Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57

    Article  PubMed  CAS  Google Scholar 

  67. Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13:19–27

    Article  PubMed  CAS  Google Scholar 

  68. Chen TH, Chang TC, Kang JO, Choudhary B, Makita T, Tran CM, Burch JBE, Eid H, Sucov HM (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207

    Article  PubMed  CAS  Google Scholar 

  69. van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NAM, Knaan-Shanzer S, Gittenberger-de Groot AC, Poelmann RE, van der Laarse A, van der Wall EE, Schalij MJ, de Vries AAF (2006) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25:271–278, DOI:10.1634/stemcells.2006–0366

    Google Scholar 

  70. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns C, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619

    Article  PubMed  CAS  Google Scholar 

  71. Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biol 4(8):e260

    Article  PubMed  CAS  Google Scholar 

  72. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  73. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  74. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669

    Article  PubMed  CAS  Google Scholar 

  75. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Article  PubMed  CAS  Google Scholar 

  76. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    Article  PubMed  CAS  Google Scholar 

  77. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  78. Kalka C, Isner JM (2002) [Cardiac and vascular gene therapy in cardiology. Current status and future prospects]. Internist (Berl) 43(Suppl 1):S66–S75

    Article  Google Scholar 

  79. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    Article  PubMed  CAS  Google Scholar 

  80. Wei J, Blum S, Unger M, Jarmy G, Lamparter M, Geishauser A, Vlastos GA, Chan G, Fischer KD, Rattat D, Debatin KM, Hatzopoulos AK, Beltinger C (2004) Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 5:477–488

    Article  PubMed  CAS  Google Scholar 

  81. Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B, Vestweber D, Hatzopoulos AK (2003) Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197:1755–1765

    Article  PubMed  CAS  Google Scholar 

  82. Kupatt C, Horstkotte J, Vlastos GA, Pfosser A, Lebherz C, Semisch M, Thalgott M, Buttner K, Browarzyk C, Mages J, Hoffmann R, Deten A, Lamparter M, Muller F, Beck H, Buning H, Boekstegers P, Hatzopoulos AK (2005) Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 19:1576–1578

    PubMed  CAS  Google Scholar 

  83. Huff T, Rosorius O, Otto AM, Muller CSG, Ballweber E, Hannappel E, Mannherz HG (2004) Nuclear localisation of the G-actin sequestering peptide thymosin β4. J Cell Sci 117:5333–5341

    Article  PubMed  CAS  Google Scholar 

  84. Golla R, Philp N, Chintipalli J, Hoffmann R, Collins L, Nachmias V (1997) Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-β4. Cell Motil Cytoskeleton 38:187–200

    Article  PubMed  CAS  Google Scholar 

  85. Moon HS, Even-Ram S, Kleinman HK, Cha HJ (2006) Zyxin is upregulated in the nucleus by thymosin beta4 in SiHa cells. Exp Cell Res 312:3425–3431

    Article  PubMed  CAS  Google Scholar 

  86. Sosne G, Xu L, Prach L, Mrock LK, Kleinman HK, Letterio JJ, Hazlett LD, Kurpakus-Wheater M (2004) Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp Cell Res 293:175–183

    Article  PubMed  CAS  Google Scholar 

  87. Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43

    PubMed  CAS  Google Scholar 

  88. Hannappel E, Leibold W (1985) Biosynthesis rates and content of thymosin β4 in cell lines. Arch Biochem Biophys 240:236–241

    Article  PubMed  CAS  Google Scholar 

  89. Huang WQ, Wang QR (2001) Bone marrow endothelial cells secrete thymosin β4 and AcSDKP. Exp Hematol 29:12–18

    Article  PubMed  CAS  Google Scholar 

  90. Huang HC, Hu CH, Tang MC, Wang WS, Chen PM, Su Y (2006) Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26(19):2781–2790

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the investigators who allowed us to reproduce figures and provided originals, as referenced. Our work is supported by the British Heart Foundation and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smart, N., Rossdeutsch, A. & Riley, P.R. Thymosin β4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis 10, 229–241 (2007). https://doi.org/10.1007/s10456-007-9077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9077-x

Keywords

Navigation