Skip to main content
Log in

T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Our previous studies have revealed the abundant expression of T-cadherin—a glycosylphosphatidylinositol (GPI)-anchored member of cadherin superfamily—in endothelial and mural cells in the heart and vasculature. The upregulation of T-cadherin in vascular proliferative disorders such as atherosclerosis and restenosis suggests the involvement of T-cadherin in vascular growth and remodeling. However, the functional significance of this molecule in the vasculature remains unknown. The effect of T-cadherin on angiogenesis in vivo was evaluated using Matrigel implant model. We demonstrate that T-cadherin overexpression in L929 cells injected in Matrigel inhibits neovascularization of the plug. In vitro T-cadherin inhibits the directional migration of endothelial cells, capillary growth, and tube formation but has no effect on endothelial cell proliferation, adhesion, or apoptosis in vitro. These data suggest that T-cadherin expressed in the stroma could act as a negative guidance cue for the ingrowing blood vessels and thus could have an important potential therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cavallaro U, Leibner S, Dejana E (2006) Endothelial cadherins and tumor angiogenesis. Exp Cell Res 312:659–667

    Article  PubMed  CAS  Google Scholar 

  2. George SJ, Beeching CA (2006) Cadherin:catenin complex: a novel regulator of vascular smooth muscle cells behaviour. Atherosclerosis 188:1–11

    Article  PubMed  CAS  Google Scholar 

  3. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev Mol Cell Biol 6:622–634

    Article  CAS  Google Scholar 

  4. Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 112:535–548

    Article  PubMed  CAS  Google Scholar 

  5. Rubina KA, Kalinina NI, Bochkov VN, Parfyonova YeV, Tkachuk VA (2005) T-cadherin as an antiadhesive and guidance molecule interacting with low density lipoproteins. Annals EAS 1–14

  6. Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7:391–402

    Article  PubMed  CAS  Google Scholar 

  7. Rubina KA, Tkachuk VA (2004) Antiadhesive molecule T-cadherin is an atypical low-density lipoprotein receptor in vascular cells. RJ Physiol 90:968–986

    CAS  Google Scholar 

  8. Philippova MP, Bochkov VN, Stambolsky DV, Tkachuk VA, Resink T (1998) T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domain of vascular smooth muscle cells. FEBS Lett 129:201–210

    Google Scholar 

  9. Ivanov D, Philippova M, Antropova J, Gubaeva F, Iljinskaya O, Tararak E, Bochkov V, Erne P, Resink T, Tkachuk V (2001) Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem Cell Biol 115:231–242

    PubMed  CAS  Google Scholar 

  10. Kudrjashova E, Bashtrikov P, Bochkov V, Parfyonova Y, Tkachuk V, Antropova J, Iljinskaya O, Tararak E, Erne P, Ivanov D, Philippova M, Resink TJ (2002) Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem Cell Biol 118:281–290

    PubMed  CAS  Google Scholar 

  11. Wyder L, Vitaliti A, Schneider H, Hebbrand LW, Moritz DR, Wittmer M, Ajmo M, Klemenz R (2000) Increased expression of H/T-cadherin in tumor-penetrating vessels. Cancer Res 60:4682–4688

    PubMed  CAS  Google Scholar 

  12. Adachi Y, Takeuchi T, Sonobe H, Ohtsuki Y (2005) An adiponectin receptor, T-cadherin, was selectively expressed in intratumoral capillary endothelial cells in hepatocellular carcinoma: possible cross talk between T-cadherin and FGF-2 pathways. Virchows Arch 5:1–8

    Google Scholar 

  13. Tkachuk VA, Bochkov VN, Philippova MP, Stambolsky DV, Kuzmenko ES, Sidorova MV, Molokoedov AS, Spirov VG, Resink TJ (1998) Identification of an atypical lipoprotein-binding protein from human aortic smooth muscle as T-cadherin. FEBS Lett 421:208–212

    Article  PubMed  CAS  Google Scholar 

  14. Rubina K, Talovskaya E, Cherenkov V, Ivanov D, Stambolsky D, Storozhevykh T, Pinelis V, Shevelev A, Parfyonova Ye, Resink T, Erne P, Tkachuk V (2005) LDL induces intracellular signaling via atypical LDL-binding protein T-cadherin. Mol Cell Biochem 273:33–41

    Article  PubMed  CAS  Google Scholar 

  15. Philippova M, Ivanov D, Allenspach R, Takuwa Y, Erne P, Resink T (2005) RhoA and Rac mediate endothelial cell polarization and detachment induced by T-cadherin. FASEB J 19:588–590

    PubMed  CAS  Google Scholar 

  16. Philippova M, Ivanov D, Tkachuk V, Erne P, Resink TJ (2003) Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility? Histochem Cell Biol 120:353–360

    Article  PubMed  CAS  Google Scholar 

  17. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528

    PubMed  CAS  Google Scholar 

  18. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Path 85:233–248

    Article  CAS  Google Scholar 

  19. Ivanov D, Philippova M, Tkachuk V, Erne P, Resink T (2004) Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293:207–218

    Article  PubMed  CAS  Google Scholar 

  20. Gifford SM, Grummer MA, Pierre SA, Austin JL, Zheng J, Bird IM (2004) Functional characterization of HUVEC-CS: Ca2+ signaling, ERK 1/2 activation, mitogenesis and vasodilator production. J Endocrinol 182:485–499

    Article  PubMed  CAS  Google Scholar 

  21. Nagata D, Mogi M, Walsh K (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 278:31000–31006

    Article  PubMed  CAS  Google Scholar 

  22. Nicosia RF, Ottinetti A (1990) Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128

    Article  PubMed  CAS  Google Scholar 

  23. Kim KS, Hong YK, Joe YA, Lee Y, Shin JY, Park HE, Lee IH, Lee SY, Kang DK, Chang SI, Chung SI (2003) Antiangiogenic activity of the recombinant kringle domain of urokinase and its specific entry into endothelial cells. J Biol Chem 278:11449–11456

    Article  PubMed  CAS  Google Scholar 

  24. Stieger SM, Bloch SH, Foreman O, Wisner ER, Ferrara KW, Dayton PA (2006) Ultrasound assessment of angiogenesis in a Matrigel model in rats. Ultrasound Med Biol 32:673–681

    Article  PubMed  Google Scholar 

  25. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  26. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464

    Article  PubMed  CAS  Google Scholar 

  27. Niessen CM, Gumbiner BV (2002) Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J Cell Biol 156:389–399

    Article  PubMed  CAS  Google Scholar 

  28. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  29. Cao Y (2005) Tumor angiogenesis and therapy. Biomed Pharmacother 9:340–343

    Article  Google Scholar 

  30. Zhong Y, Lopez Barcons L, Haigentz M, Ling YH, Perez-Soler R (2004) Exogenous expression of H-cadherin in CHO cells regulates contact inhibition of cell growth by inducing p21 expression. Int J Oncol 24:1573–1579

    PubMed  CAS  Google Scholar 

  31. Ivanov D, Philippova M, Allenspach R, Erne P, Resink T (2004) T-cadherin upregulation correlates with cells-cycle progression and promotes proliferation of vascular cells. Cardiovasc Res 64:132–143

    Article  PubMed  CAS  Google Scholar 

  32. Philippova M, Banfi A, Ivanov D, Gianni-Barrera R, Allenspach Erne P, Resink T (2006) Atypical GPI-anchored T-cadherin stimulates angiogenesis in vitro and in vivo. Artherioscler ThrombVasc Biol 26:2222–2223

    Article  CAS  Google Scholar 

  33. Joshi MB, Philippova M, Ivanov D, Allenspach R, Erne P, Resink TJ (2005) T-cadherin protects endothelisl cells from oxidative stress-induced apoptosis. FASEB J 19:1737–1739

    PubMed  CAS  Google Scholar 

  34. Takeuchi T, Misaki A, Liang SB, Tachibana A, Hayashi N, Sonobe H, Ohtsuki Y (2000) Expression of T-cadherin (CDH13, H-cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem 74:1489–1497

    Article  PubMed  CAS  Google Scholar 

  35. Takeuchi T, Ohtsuki Y (2001) Recent progress in T-cadherin (CDH13, H-cadherin) research. Histol Histopathol 16:1287–1293

    PubMed  CAS  Google Scholar 

  36. Kawakami M, Staub J, Clibi W, Hartmann L, Smith DI, Shridhar V (1999) Involvement of H-cadherin (CDH13) on 16q in the region of frequent deletion in ovarian cancer. Int J Oncol 15:715–720

    PubMed  CAS  Google Scholar 

  37. Takeuchi T, Liang S-B, Ohtsuki Y (2002) Downregulation of expression of a novel cadherin molecule, T-cadherin, in basal cell carcinoma of the skin. Mol Cancerogen 35:173–179

    Article  CAS  Google Scholar 

  38. Hibi K, Nakayama H, Kodera K, Ito K, Akiyama S, Nakao A (2004) CDH13 promoter region is specifically methylated in poorly differentiated colorectal cancer. Brit J Cancer 90:1030–1033

    Article  PubMed  CAS  Google Scholar 

  39. Sakai M, Hibi K, Koshikawa K, Inoue S, Takeda S, Kaneko T, Nakao A (2004) Frequent promoter methylation and gene silencing of CDH13 in pancreatic cancer. Cancer Sci 95:588–591

    Article  PubMed  CAS  Google Scholar 

  40. Kim JS, Han J, Shim YM, Park J, Kim DH (2005) Abberant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma. Cancer 104:1825–1833

    Article  PubMed  CAS  Google Scholar 

  41. Mukoyama Y, Zhou S, Miyachi Y, Matsuyoshi N (2005) T-cadherin negatively regulates the proliferation of cutaneous squamous carcinoma cells. J Invest Dermatol 124:833–838

    Article  PubMed  CAS  Google Scholar 

  42. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nature Genet 4:710–720

    Article  CAS  Google Scholar 

  43. Weinstein BM (2005) Vessels and nerves: marching to the same tune. Cell 120:299–302

    Article  PubMed  CAS  Google Scholar 

  44. Eichmann A, Makinen T, Alitalo K (2006) Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 19:1013–1021

    Article  CAS  Google Scholar 

  45. Poliakov A, Cortina M, Wilkinson DG (2004) Diverse roles of Eph receptors and Ephrins in the regulation of cell migration and tissue assembly. Dev Cell 7:465–480

    Article  PubMed  CAS  Google Scholar 

  46. Davy A, Soriano P (2005) Ephrins in vivo: look both ways. Dev Dynamics 232:1–10

    Article  CAS  Google Scholar 

  47. Fredette BJ, Ranscht B (1994) T-cadherin expression delineates specific regions of the developing motoraxon-hindlimb projection pathway. J Neurosci 14:7331–7346

    PubMed  CAS  Google Scholar 

  48. Fredette BJ, Miller J, Ranscht B (1996) Inhibition of motor axon growth by T-cadherin substrata. Development 122:3163–3171

    PubMed  CAS  Google Scholar 

  49. Desmouliere A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor behavior. Int J Dev Biol 48:509–517

    Article  PubMed  CAS  Google Scholar 

  50. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nature Rev Cancer 6:392–401

    Article  CAS  Google Scholar 

  51. Resink TJ, Kuzmenko YS, Kern F, Stambosly D, Bochkov VN, Tkachuk VA, Erne P, Niermann T (1999) LDL binds to surface expressed human T-cadherin in transfected HEK293 cells and influences homophilic adhesive interactions. FEBS Lett 463:29–34

    Article  PubMed  CAS  Google Scholar 

  52. Vestal DJ, Ranscht B (1992) Glycosyl phosphatidylinositol-anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J Cell Biol 119:451–461

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Welcome Trust grant # 075154 and Russian Foundation for Basic Research # 04-04-49399. We thank Dr. Olga Antonova for HUVEC culture, Vasiliy Cherenkov for purifying recombinant T-cadherin domains, Elizaveta Ratner for technical support and Elena Malinina for double immunofluorescent staining of Matrigel cryosections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kseniya Rubina.

Additional information

Kseniya Rubina and Natalia Kalinina have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material

Fig. 8

Time-lapse live-cell fluorescence imaging. Representative views. (A, C) 4 days in co-culture of control HEK293 with HEK293 cells expressing GFP and T-cadherin (combined GFP and relief contrast image). (B, D) 2 days in co-culture of L929 cells expressing T-cadherin with control L929 cells labeled with CellTracker Green (combined CMFDA and relief contrast image). Scale bars – 50 μm

10456_2007_9072_MOESM1_ESM.avi

Appendices

Appendix

It was previously shown that T-cadherin could mediate weak homophilic adhesion in aggregation assays in vitro [51, 52]. To analyze whether T-cadherin is involved in adhesion that underlies cell sorting, we performed time-lapse live-cell fluoresce imaging. For these experiments we co-cultured control HEK293 cells with HEK293 cells co-expressing GFP and T-cadherin [14]; or CellTracker labeled control L929 cells with L929 cells expressing T-cadherin. Cells intermingled equally and we could detect no difference in the number, size, or distribution of fluorescently labeled cells in the aggregates (data not shown). There was also neither cell sorting nor T-cadherin-mediated repulsive or adhesive effects observed over a period of 2–4 days in time-lapse living cell experiments (Figure I, movie).

Materials and methods

Time-lapse live-cell fluorescence imaging

Time-lapse observations were performed using a DeltaVision Olympus IX70 inverted microscope with a ×20/0.40 NA objective lens with relief contrast optics. Cells were suspended with cell-dissociation buffer (Invitrogen, Gibco) before the experiment and plated in fibronectin-coated Lab-Tek Chambered #1.0 coverglass systems in 1:1 proportion. The total concentration of cells was 35.000/cm2. The cells were observed during 2–4 days in a 37°C environmental chamber. Each image was acquired with 4-min exposure of the CCD camera.

Labeling of cells with CellTracker reagent

Cells were labeled using CellTracker Green CMFDA reagent (Invitrogen, Molecular Probes) according to manufacturer instructions. In brief, the cells were incubated with 10 μM CMFDA for 15 min followed by incubation in fresh pre-warmed medium for another 30 min at 37°C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubina, K., Kalinina, N., Potekhina, A. et al. T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis 10, 183–195 (2007). https://doi.org/10.1007/s10456-007-9072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9072-2

Keywords

Navigation