Skip to main content
Log in

LDL induces intracellular signalling and cell migration via atypical LDL-binding protein T-cadherin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cadherins are a superfamily of adhesion molecules that mediate Ca2+-dependent cell–cell adhesion. T-cadherin (T-cad), a unique glycosylphosphatidylinositol-anchored member of the cadherin superfamily, was initially identified by immunoblotting of vascular cell membranes as an atypical low affinity low density lipoprotein (LDL)-binding protein. It is not known whether this heterophilic interaction is physiologically relevant. Expression of T-cadherin is upregulated in vascular cells during atherosclerosis, restenosis and tumour angiogenesis, conditions characterized by enhanced cell migration and growth. Elevated levels of serum low density lipoproteins (LDL), which result in cholesterol accumulation in vascular wall, is a widely accepted risk factor in atherosclerosis development. Additionally to its metabolic effects, LDL can produce hormone-like effects in a number of cell types. This study has utilized HEK293 cells and L929 cells stably transfected with T-cadherin cDNA to investigate T-cad-dependent responses to LDL. Stable expression of T-cad in both HEK293 and L929 cells results in significantly (p < 0.05) elevated specific surface binding of [I125]-LDL. Compared with mock-transfectants, cells expressing T-cad exhibit significantly (p < 0.01) enhanced LDL-induced mobilization of intracellular Ca2+-stores and a significantly (p < 0.01) increased migration toward an LDL gradient (0.1% BSA + 60 μg/ml LDL) in Boyden chamber migration assay. Thus LDL-binding to T-cad is capable of activating physiologically relevant intracellular signaling and functional responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez-Moreno M, Jamora C, Fuchs E: Sticky business: Orchestrating cellular signals at adherens junctions. Cell 112: 535–548, 2003

    Article  CAS  PubMed  Google Scholar 

  2. Angst BD, Marcozzi C, Magee AI: The cadherin superfamily: Diversity in form and function. J Cell Sci 114: 629–641, 2001

    CAS  PubMed  Google Scholar 

  3. Ivanov DB, Philippova MP, Tkachuk VA: Structure and functions of classical cadherins. Biochemistry (Mosc) 66: 1174–1186, 2001

    Article  CAS  Google Scholar 

  4. Vestal DJ, Ranscht B: Glycosyl phosphatidylinositol–anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J Cell Biol 119: 451–461, 1992

    Article  CAS  PubMed  Google Scholar 

  5. Ranscht B, Dours-Zimmermann MT: T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7: 391–402, 1991

    Article  CAS  PubMed  Google Scholar 

  6. Fredette BJ, Ranscht B: T-cadherin expression delineates specific regions of the developing motor axon-hindlimb projection pathway. J Neurosci 14: 7331–7346, 1994

    CAS  PubMed  Google Scholar 

  7. Fredette BJ, Miller J, Ranscht B: Inhibition of motor axon growth by T-cadherin substrata. Development 122: 3163–3171, 1996

    CAS  PubMed  Google Scholar 

  8. Ivanov D, Philippova M, Antropova J, Gubaeva F, Iljinskaya O, Tararak E, Bochkov V, Erne P, Resink T, Tkachuk V: Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem Cell Biol 115: 231–242, 2001

    CAS  PubMed  Google Scholar 

  9. Ivanov D, Philippova M, Tkachuk V, Erne P, Resink T: Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293: 207–218, 2004

    Article  CAS  PubMed  Google Scholar 

  10. Kudrjashova E, Bashtrikov P, Bochkov V, Parfyonova Y, Tkachuk V, Antropova J, Iljinskaya O, Tararak E, Erne P, Ivanov D, Philippova M, Resink TJ: Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem Cell Biol 118: 281–290, 2002

    CAS  PubMed  Google Scholar 

  11. Takeuchi T, Ohtsuki Y: Recent progress in T-cadherin (CDH13, H-cadherin) research. Histol Histopathol 16: 1287–1293, 2001

    CAS  PubMed  Google Scholar 

  12. Wyder L, Vitaliti A, Schneider H, Hebbard LW, Moritz DR, Wittmer M, Ajmo M, Klemenz R: Increased expression of H/T-cadherin in tumor-penetrating blood vessels. Cancer Res 60: 4682–4688, 2000

    CAS  PubMed  Google Scholar 

  13. Ivanov D, Philippova M, Allenspach R, Erne P, Resink T: T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells. Cardiovasc Res 64: 132–143, 2004

    Article  CAS  PubMed  Google Scholar 

  14. Bochkov VN, Tkachuk VA, Philippova MP, Stambolsky DV, Buhler FR, Resink TJ: Ligand selectivity of 105 kDa and 130 kDa lipoprotein-binding proteins in vascular-smooth-muscle-cell membranes is unique. Biochem J 317(1): 297–304, 1996

    CAS  PubMed  Google Scholar 

  15. Tkachuk VA, Kuzmenko YS, Resink TJ, Stambolsky DV, Bochkov VN: Atypical low density lipoprotein binding site that may mediate lipoprotein-induced signal transduction. Mol Pharmacol 46: 1129–1137, 1994

    CAS  PubMed  Google Scholar 

  16. Tkachuk VA, Bochkov VN, Philippova MP, Stambolsky DV, Kuzmenko ES, Sidorova MV, Molokoedov AS, Spirov VG, Resink TJ: Identification of an atypical lipoprotein-binding protein from human aortic smooth muscle as T-cadherin. FEBS Lett 421: 208–212, 1998

    Article  CAS  PubMed  Google Scholar 

  17. Ross R: Cell biology of atherosclerosis. Annu Rev Physiol 57: 1451–1455, 1995

    Article  Google Scholar 

  18. Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ: Receptor-mediated endocytosis: Concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1: 1–39, 1985

    Article  CAS  PubMed  Google Scholar 

  19. Philippova M, Ivanov D, Tkachuk V, Erne P, Resink TJ: Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: A function in vascular cell motility? Histochem Cell Biol 120: 353–360, 2003

    Article  CAS  PubMed  Google Scholar 

  20. Bochkov VN, Tkachuk VA, Kuzmenko YS, Borisova YL, Buhler FR, Resink TJ: Characteristics of low and high density lipoprotein binding and lipoprotein-induced signaling in quiescent human vascular smooth muscle cells. Mol Pharmacol 45: 262–270, 1994

    CAS  PubMed  Google Scholar 

  21. Goldstein JL, Basu SK, Brown MS: Receptor mediated endocytosis of low density lipoproteins in cultured cells. Methods Enzymol 98: 241–260, 1983

    CAS  PubMed  Google Scholar 

  22. Grynkiewicz G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450, 1985

    CAS  PubMed  Google Scholar 

  23. Mukhina S, Stepanova V, Traktouev D, Poliakov A, Beabealashvilly R, Gursky Y, Minashkin M, Shevelev A, Tkachuk V: The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. Characterization of interactions and contribution to chemotaxis. J Biol Chem 275: 16450–16458, 2000

    Article  CAS  PubMed  Google Scholar 

  24. Uyama Y, Imaizumi Y, Watanabe M: Effects of cyclopiazonic acid, a novel Ca2+-ATPase inhibitor, on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208–214, 1992

    CAS  PubMed  Google Scholar 

  25. Demaurex N, Lew DP, Krause KH: Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem 267: 2318–2324, 1992

    CAS  PubMed  Google Scholar 

  26. Brown MS, Goldstein JL: A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47, 1986

    CAS  PubMed  Google Scholar 

  27. Block LH, Knorr M, Vogt E, Locher R, Vetter W, Groscurth P, Qiao B-Y, Pometta D, James R, Regenass M, Pletscher A: Low density lipoproteins causes general cellular activation with increased phosphatidylinositol turnover and lipoprotein catabolism. Proc Natl Acad Sci USA 85: 885–889, 1988

    CAS  PubMed  Google Scholar 

  28. Buhler FR, Tkachuk VA, Hahn AW, Resink TJ: Low and high density lipoproteins as hormonal regulators of platelet, vascular endothelial and smooth muscle cell interactions: Relevance to hypertension. J Hypertens (Suppl 9): S28–S36, 1991

  29. Bochkov VN, Rozhkova TA, Matchin Yu G, Lyakishev AA, Bochkova NA, Borisova Yu L, Kukharchuk VV, Tkachuk VA: LDL and agonist-induced Ca2+-mobilization in platelets of healthy subjects and in patients with familial hyperlipoproteinemia type II. Thromb Res 61: 403–409, 1991

    Article  CAS  PubMed  Google Scholar 

  30. Kelley JL, Rozek MM, Suenram CA, Schwartz CJ: Activation of human peripheral blood monocytes by lipoproteins. Am J Pathol 130: 223–231, 1988

    CAS  PubMed  Google Scholar 

  31. Voyno-Yasenetskaya TA, Dobbs LG, Erickson SK, Hamilton RL: Low density lipoprotein- and high density lipoprotein mediated signal transduction and exocytosis in alveolar type II cells. Proc Natl Acad Sci USA 90: 4256–4260, 1993

    CAS  PubMed  Google Scholar 

  32. Resink TJ, Bochkov VN, Hahn AW, Philippova MP, Buhler FR, Tkachuk VA: Low and high-density lipoproteins as mitogenic factors for vascular smooth muscle cells: Individual, additive and synergistic effects. J Vasc Res 32: 328–338, 1995

    CAS  PubMed  Google Scholar 

  33. Scott-Burden T, Resink TJ, Hahn AW, Baur U, Box RJ, Buhler FR: Induction of growth-related metabolism in human vascular smooth muscle cells by low density lipoprotein. J Biol Chem 264: 12582–12589, 1989

    CAS  PubMed  Google Scholar 

  34. Sachinidis A, Mengden T, Locher R, Brunner C, Vetter W: Novel cellular activities for low density lipoprotein in vascular smooth muscle cells. Hypertension 15: 704–711, 1990

    CAS  PubMed  Google Scholar 

  35. Knorr M, Locher R, Vogt E, Vetter W, Block LH, Ferracin F, Lefkovits H, Pletscher A: Rapid activation of human platelets by low concentrations of low-density lipoprotein via phosphatidylinositol cycle. Eur J Biochem 172: 753–759, 1988

    Article  CAS  PubMed  Google Scholar 

  36. Bochkov V, Tkachuk V, Buhler F, Resink T: Phosphoinositide and calcium signalling responses in smooth muscle cells: Comparison between lipoproteins, Ang II, and PDGF. Biochem Biophys Res Commun 188: 1295–1304, 1992

    Article  CAS  PubMed  Google Scholar 

  37. Kuzmenko YS, Bochkov VN, Philippova MP, Tkachuk VA, Resink TJ: Characterization of an atypical lipoprotein-binding protein in human aortic media membranes by ligand blotting. Biochem J 303: 281–287, 1994

    CAS  PubMed  Google Scholar 

  38. Stambolsky DV, Kuzmenko YS, Philippova MP, Bochkov VN, Bespalova ZD, Azmuko AA, Kashirina NM, Vlasik TN, Tkachuk VA, Resink TJ: Identification of 130 kDa cell surface LDL-binding protein from smooth muscle cells as a partially processed T-cadherin precursor. Biochim Biophys Acta 1416: 155–160, 1999

    CAS  PubMed  Google Scholar 

  39. Resink TJ, Kuzmenko YS, Kern F, Stambolsky D, Bochkov VN, Tkachuk VA, Erne P, Niermann T: LDL binds to surface-expressed human T-cadherin in transfected HEK293 cells and influences homophilic adhesive interactions. FEBS Lett 463: 29–34, 1999

    Article  CAS  PubMed  Google Scholar 

  40. Niermann T, Kern F, Erne P, Resink T: The glycosyl phosphatidylinositol anchor of human T-cadherin binds lipoproteins. Biochem Biophys Res Commun 276: 1240–1247, 2000

    Article  CAS  PubMed  Google Scholar 

  41. Berridge MJ, Bootman MD, Roderick HL: Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517–529, 2003

    Article  CAS  PubMed  Google Scholar 

  42. Koller E, Ranscht B: Differential targeting of T- and N-cadherin in polarized epithelial cells. J Biol Chem 271: 30061–30067, 1996

    Article  CAS  PubMed  Google Scholar 

  43. Philippova MP, Bochkov VN, Stambolsky DV, Tkachuk VA, Resink TJ: T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett 429: 207–210, 1998

    Article  CAS  PubMed  Google Scholar 

  44. Cebecauer M, Cerny J, Horejsi V: Incorporation of leucocyte GPI-anchored proteins and protein tyrosine kinases into lipid-rich membrane domains of COS-7 cells. Biochem Biophys Res Commun 243: 706–710, 1998

    Article  CAS  PubMed  Google Scholar 

  45. Hiscox S, Hallett MB, Morgan BP, van den Berg CW: GPI-anchored GFP signals Ca2+ but is homogeneously distributed on the cell surface. Biochem Biophys Res Commun 293: 714–721, 2002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rubina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubina, K., Talovskaya, E., Cherenkov, V. et al. LDL induces intracellular signalling and cell migration via atypical LDL-binding protein T-cadherin. Mol Cell Biochem 273, 33–41 (2005). https://doi.org/10.1007/s11010-005-0250-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-0250-5

Keywords

Navigation