Skip to main content

Advertisement

Log in

An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

In order to better understand the process of angiogenesis in the developing human brain, we have examined the spatial relationship and relative contributions of endothelial cells and pericytes, the two primary cell types involved in vessel growth, together with their relation with the vascular basement membrane. Pericytes were immunolocalized through use of the specific markers nerve/glial antigen 2 (NG2) proteoglycan, endosialin (CD248) and the platelet-derived growth factor receptor β (PDGFR-β), while endothelial cells were identified by the pan-endothelial marker CD31 and the blood brain barrier (BBB)-specific markers claudin-5 and glucose transporter isoform 1 (GLUT-1). The quantitative analysis demonstrates that microvessels of the fetal human telencephalon are characterized by a continuous layer of activated/angiogenic NG2 pericytes, which tightly invest endothelial cells and participate in the earliest stages of vessel growth. Immunolabelling with anti-active matrix metalloproteinase-2 (aMMP-2) and anti-collagen type IV antibodies revealed that aMMP-2 producing endothelial cells and pericytes are both associated with the vascular basement membrane during vessel sprouting. Detailed localization of the two vascular cell types during angiogenesis suggests that growing microvessels of the human telencephalon are formed by a pericyte-driven angiogenic process in which the endothelial cells are preceded and guided by migrating pericytes during organization of the growing vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aMMP-2:

Active matrix metalloproteinase-2

BB:

Blocking buffer

BBB:

Blood–brain barrier

CD31:

PECAM-1

CNS:

Central nervous system

ECM:

Extracellular matrix

GLUT-1:

Glucose transporter isoform 1

mAb:

Monoclonal antibody

NG2:

Nerve/glial antigen 2

pAb:

Polyclonal antibody

PBS:

Phosphate-buffered saline

PDGFR-β:

Platelet-derived growth factor receptor β

VEGF:

Vascular endothelial growth factor

References

  1. Risau W (1993) Development of vascular system of organs and tissue. In: Shaper W, Shaper J (eds) Collateral circulation. Kluwer Academic, Norwell

    Google Scholar 

  2. Kuban KCK, Gilles FH (1985) Human telencephalic angiogenesis. Ann Neurol 17:539–548

    Article  PubMed  CAS  Google Scholar 

  3. Norman MG, O’Kushy JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45:222–232

    PubMed  CAS  Google Scholar 

  4. Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270:469–474

    Article  PubMed  CAS  Google Scholar 

  5. Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373

    PubMed  CAS  Google Scholar 

  6. Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 53:637–644

    Article  PubMed  CAS  Google Scholar 

  7. Hirschi KK, Rohovsky SA, Beck LH et al (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305

    PubMed  CAS  Google Scholar 

  8. Redmer DA, Doraiswamy V, Bortnem BJ et al (2001) Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol Reprod 65:879–889

    Article  PubMed  CAS  Google Scholar 

  9. Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590

    Article  PubMed  CAS  Google Scholar 

  10. Witmer AN, van Blijswijk BC, van Noorden CJF et al (2004) In vivo angiogenesis phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-A. J Histochem Cytochem 52:39–52

    PubMed  CAS  Google Scholar 

  11. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  PubMed  CAS  Google Scholar 

  12. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 7:452–464

    Article  PubMed  CAS  Google Scholar 

  13. Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 50:258–265

    Article  PubMed  CAS  Google Scholar 

  14. Burg M, Pasqualini R, Arap W et al (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 235:254–264

    Google Scholar 

  15. Ozerdem U, Grako KA, Dahlin-Huppe K et al (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    Article  PubMed  CAS  Google Scholar 

  16. Ozerdem U, Monosov E, Stallcup WB (2002) NG2 proteoglycan expression by pericytes in pathological microvasculature. Microsc Res 63:129–134

    CAS  Google Scholar 

  17. Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenesis sprouting and tube formation. Angiogenesis 6:241–249

    Article  PubMed  CAS  Google Scholar 

  18. Ozerdem U, Stallcupp WB (2004) Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7:269–276

    Article  PubMed  CAS  Google Scholar 

  19. Schlingemann RO, Rietveld FJ, de Waal RM et al (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 136:1393–1405

    PubMed  CAS  Google Scholar 

  20. Grako KA, Stallcup WB (1995) Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res 221:231–240

    Article  PubMed  CAS  Google Scholar 

  21. Chekenya M, Enger P, Thorsen F et al (2002) The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol Appl Neurobiol 28:367–380

    Article  PubMed  CAS  Google Scholar 

  22. Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23

    Article  PubMed  Google Scholar 

  23. MacFadyen JR, Haworth O, Roberston D et al (2005) Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett 579:2569–2575

    Article  PubMed  CAS  Google Scholar 

  24. Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15:215–228

    Article  PubMed  CAS  Google Scholar 

  25. Virgintino D, Robertson D, Benagiano V et al (2000) Immunogold cytochemistry of the blood–brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Brain Res Dev Brain Res 123:95–101

    Article  PubMed  CAS  Google Scholar 

  26. Virgintino D, Errede M, Robertson D et al (2003) VEGF expression is developmentally regulated during human brain angiogenesis. Histochem Cell Biol 119:227–232

    PubMed  CAS  Google Scholar 

  27. Virgintino D, Errede M, Robertson D et al (2004) Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol 122:51–59

    Article  PubMed  CAS  Google Scholar 

  28. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    PubMed  Google Scholar 

  29. Haralabopoulos GC, Grant DS, Kleinman HK et al (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial alignment in matrigel in vitro and angiogenesis in vivo. Lab Invest 71:575–582

    PubMed  CAS  Google Scholar 

  30. Tagami M, Yamagata K, Fujino H et al (1992) Morphological differentiation of endothelial cells co-cultured with astrocytes on type-I or type-IV collagen. Cell Tissue Res 268:225–232

    Article  PubMed  CAS  Google Scholar 

  31. Savettieri G, Di Liegro I, Catania C et al (2000) Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport 11:1081–1084

    Article  PubMed  CAS  Google Scholar 

  32. Campbell IL, Pagenstecher A (1999) Matrix metalloproteinases and their inhibitors in the nervous system: the good, the bad and the enigmatic. Trends Neurosci 22:285–287

    Article  PubMed  CAS  Google Scholar 

  33. Nguyen M, Arkell J, Jackson CJ (2001) Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 33:960–970

    Article  PubMed  CAS  Google Scholar 

  34. Planas AM, Sole S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8:834–846

    Article  PubMed  CAS  Google Scholar 

  35. Girolamo F, Virgintino D, Errede M et al (2004) Involvement of metalloprotease-2 in the development of human brain microvessels. Histochem Cells Biol 122:261–270

    Article  CAS  Google Scholar 

  36. Notari L, Miller A, Martinez A et al (2005) Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci 46:2736–2747

    Article  PubMed  Google Scholar 

  37. Tillet E, Ruggiero F, Nishiyama A et al (1997). The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central non-globular domain of its core protein. J Biol Chem 272:10769–10776

    Article  PubMed  CAS  Google Scholar 

  38. Bayer SA, Altman J (2005) The human brain during the second trimester. Taylor and Francis, London

    Google Scholar 

  39. Huber MA, Kraut N, Schweifer N et al (2006) Expression of stromal cell markers in distinct compartments of human skin cancers. J Cutan Pathol 33:145–155

    Article  PubMed  Google Scholar 

  40. Macfadyen J, Savage K, Wienke D et al (2006) Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expr Patterns doi:10.1016/j.modgep.2006.07.006

  41. Nishiyama A, Lin XH, Stallcup WB (1995) Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol Biol Cell 6:1819–1832

    PubMed  CAS  Google Scholar 

  42. Roggendorf W, Opti H, Schuppan D (1988) Altered expression of collagen type VI in brain vessels of patients with chronic hypertension. A comparison with distribution of collagen type VI and procollagen III. Acta Neuropathol (Berl) 77:55–60

    Article  CAS  Google Scholar 

  43. Stallcup WB (2002) The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31:423–435

    Article  PubMed  CAS  Google Scholar 

  44. Kuo HJ, Maslen CL, Keene DR et al (1997) Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. Biol Chem 272:26522–26529

    Article  CAS  Google Scholar 

  45. Miller B, Sheppard A, Bicknese A et al (1995) Chondroitin sulfate proteoglycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways. J Comp Neurol 355:615–628

    Article  PubMed  CAS  Google Scholar 

  46. Liebner S, Fischmann A, Rascher G et al (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 100:323–331

    Article  CAS  Google Scholar 

  47. Errede M, Benagiano V, Girolamo F (2002) Differential expression of connexin43 in foetal, adult and tumour-associated human brain endothelial cells. Histochem J 34:265–271

    Article  PubMed  CAS  Google Scholar 

  48. Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    PubMed  Google Scholar 

  49. Baffert F, Thurston G, Rochon-Duck M et al (2004) Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res 94:984–992

    Article  PubMed  CAS  Google Scholar 

  50. Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43:3500–3510

    PubMed  Google Scholar 

  51. Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698

    Article  PubMed  CAS  Google Scholar 

  52. Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  53. Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 49:203–220

    PubMed  Google Scholar 

  54. Ghersi G, Zhao Q, Salamone M et al (2006) The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 66:4652–4661

    Article  PubMed  CAS  Google Scholar 

  55. Albrecht U, Seulberger H, Schwarz H et al (1990) Correlation of blood–brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res 535:49–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Ministero dell’Istruzione Università e Ricerca (MIUR; FIRB 2001) and Fondazione Cassa di Risparmio di Puglia (FCRP 2005) to DV. We thank Clare M. Isacke and John R. MacFayden, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, for the generous gift of endosialin antibody. We gratefully acknowledge Mary V. C. Pragnell, BA for linguistic help, and Marisa Ambrosi, Antonella Grano, and Loredana Lorusso for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Virgintino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virgintino, D., Girolamo, F., Errede, M. et al. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 10, 35–45 (2007). https://doi.org/10.1007/s10456-006-9061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9061-x

Keywords

Navigation