Skip to main content

Advertisement

Log in

EDB fibronectin and angiogenesis – a novel mechanistic pathway

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Extra domain-B containing fibronectin (EDB+ FN), a recently proposed marker of angiogenesis, has been shown to be expressed in a number of human cancers and in ocular neovascularization in patients with proliferative diabetic retinopathy. To gain molecular understanding of the functional significance of EDB+ FN, we have investigated possible regulatory mechanisms of induction and its role in endothelial cell proliferation and angiogenesis. Human vascular endothelial cells were cultured in high levels of glucose, and fibrogenic growth factors, transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). Our results show that high glucose levels, TGF-β1, and ET-1 upregulated EDB+ FN expression. Treatment of cells exposed to high glucose with TGF-β1 neutralizing antibody and ET receptor antagonist prevented high glucose-induced EDB+ FN expression. In order to elucidate the functional significance of EDB+ FN upregulation, cells were subjected to in vitro proliferation and angiogenesis assays following EDB peptide treatment and specific EDB+ FN gene silencing. Our results show that exposure of cells to EDB peptide increased vascular endothelial growth factor (VEGF) expression, endothelial proliferation, and tube formation. Furthermore, specific EDB+ FN gene silencing prevented both basal and high glucose-induced VEGF expression and reduced the proliferative capacity of endothelial cells. In conclusion, these results indicate that EDB+ FN is involved in endothelial cell proliferation and vascular morphogenesis, findings which may provide novel avenues for the development of anti-angiogenic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J, Shing Y. (1992). Angiogenesis. J Biol Chem 267:10931–4

    PubMed  CAS  Google Scholar 

  3. Badylak SF. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13:377–83

    Article  PubMed  CAS  Google Scholar 

  4. Castellani P, Viale G, Dorcaratto A, et al. (1994). The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–8

    Article  PubMed  CAS  Google Scholar 

  5. Colombi M, Barlati S, Kornblihtt A, et al. (1986). A family of fibronectin mRNAs in human normal and transformed cells. Biochem Biophys Acta 868:207–14

    PubMed  CAS  Google Scholar 

  6. Demartis S, Tarli L, Borsi L, et al. (2001). Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nuc Med 28:534–9

    Article  PubMed  CAS  Google Scholar 

  7. Khan ZA, Cukiernik M, Gonder J, et al. (2004). Oncofetal fibronectin in diabetic retinopathy. Invest Ophthalmol Vis Sci 45:287–95

    Article  PubMed  Google Scholar 

  8. Pagani F, Zagato L, Vergani C, et al. (1991). Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat. J Cell Biol 113:1223–9

    Article  PubMed  CAS  Google Scholar 

  9. Schwarzbauer JE, Tamkun JW, Lemischka IR, et al. (1983). Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35:421–31

    Article  PubMed  CAS  Google Scholar 

  10. Tamkun JW, Schwarzbauer JE, Hynes RO. (1984). A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc Natl Acad Sci USA 81:5140–4

    Article  PubMed  CAS  Google Scholar 

  11. Zardi L, Carnemolla B, Siri A, et al. (1987). Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6:2337–42

    PubMed  CAS  Google Scholar 

  12. Roberts AB, Sporn MB, Assoian RK, et al. (1986). Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–71

    Article  PubMed  CAS  Google Scholar 

  13. Yang EY, Moses HL. (1990). Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–41

    Article  PubMed  CAS  Google Scholar 

  14. Phillips GD, Whitehead RA, Stone AM, et al. (1993). Transforming growth factor beta (TGF-B) stimulation of angiogenesis: an electron microscopic study. J Submicrosc Cytol Pathol 25:149–55

    PubMed  CAS  Google Scholar 

  15. Sakamoto T, Ueno H, Sonoda K, et al. (2000). Blockade of TGF-beta by in vivo gene transfer of a soluble TGF-beta type II receptor in the muscle inhibits corneal opacification, edema and angiogenesis. Gene Ther 7:1915–24

    Article  PubMed  CAS  Google Scholar 

  16. Kurihara H, Yoshizumi M, Sugiyama T, et al. (1989). Transforming growth factorbeta stimulates the expression of endothelin mRNA by vascular endothelial cells. Biochem Biophys Res Commun 159:1435–40

    Article  PubMed  CAS  Google Scholar 

  17. Lee SD, Lee DS, Chun YG, et al. (2000). Transforming growth factor-beta1 induces endothelin-1 in a bovine pulmonary artery endothelial cell line and rat lungs via cAMP. Pulm Pharmacol Ther 13:257–65

    Article  PubMed  CAS  Google Scholar 

  18. Pertovaara L, Kaipainen A, Mustonen T, et al. (1994). Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and endothelial cells. J Biol Chem 269:6271–4

    PubMed  CAS  Google Scholar 

  19. Salani D, Taraboletti G, Rosano L, et al. (2000). Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am J Pathol 157:1703–11

    PubMed  CAS  Google Scholar 

  20. Kusuhara M, Yamaguchi K, Nagasaki K, et al. (1990). Production of endothelin in human cancer cell lines. Cancer Res 50:3257–61

    PubMed  CAS  Google Scholar 

  21. Vigne P, Marsault R, Breittmayer JP, et al. (1990). Endothelin stimulates phosphatidylinositol hydrolysis and DNA synthesis in brain capillary endothelial cells. Biochem J 266:415–20

    PubMed  CAS  Google Scholar 

  22. Chen S, Mukherjee S, Chakraborty C, et al. (2003). High glucoseinduced, endothelin-dependent fibronectin synthesis is mediated via NFkappa B and AP-1. Am J Physiol Cell Physiol 284:C263–72

    PubMed  CAS  Google Scholar 

  23. Chen S, Khan ZA, Cukiernik M, et al. (2003). Differential activation of NF-kappa B and AP-1 in increased fibronectin synthesis in target organs of diabetic complications. Am J Physiol Endocrinol Metab 284:E1089–97

    PubMed  CAS  Google Scholar 

  24. Schmittgen TD, Zakrajsek BA. (2000). Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RTPCR. J Biochem Biophys Methods 46:69–81

    Article  PubMed  CAS  Google Scholar 

  25. Fattorusso R, Pellecchia M, Viti F, et al. (1999). NMR structure of the human oncofoetal fibronectin ED-B domain, a specific marker for angiogenesis. Structure Fold Des 7:381–90

    Article  PubMed  CAS  Google Scholar 

  26. Hammond SM, Boettcher S, Caudy AA, et al. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–50

    Article  PubMed  CAS  Google Scholar 

  27. Scudiero DA, Shoemaker RH, Paull KD, et al. (1988). Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–33

    PubMed  CAS  Google Scholar 

  28. Sweeney SM, DiLullo G, Slater SJ, et al. (2003). Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 278:30516–24

    Article  PubMed  CAS  Google Scholar 

  29. Roy S, Roth T. (1997). Proliferative effect of high glucose is modulated by antisense oligonucleotides against fibronectin in rat endothelial cells. Diabetologia 40:1011–7

    Article  PubMed  CAS  Google Scholar 

  30. Yamada KM. (1983). Cell surface interactions with extracellular materials. Annu Rev Biochem 52:761–99

    Article  PubMed  CAS  Google Scholar 

  31. Ferrara N. (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:C1358–66

    PubMed  CAS  Google Scholar 

  32. Carnemolla B, Neri D, Castellani P, et al. (1996). Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68:397–405

    Article  PubMed  CAS  Google Scholar 

  33. Neri D, Carnemolla B, Nissim A, et al. (1997). Targeting by affinitymatured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–5

    Article  PubMed  CAS  Google Scholar 

  34. Pini A, Viti F, Santucci A, et al. (1998). Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–76

    Article  PubMed  CAS  Google Scholar 

  35. Relou IA, Damen CA, van der Schaft DW, et al. (1998). Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell 30:525–30

    Article  PubMed  CAS  Google Scholar 

  36. Aiello LP, Avery RL, Arrigg PG, et al. (1994). Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–7

    Article  PubMed  CAS  Google Scholar 

  37. Miller JW, Adamis AP, Aiello LP. (1997). Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab Res Rev 13:37–50

    Article  CAS  Google Scholar 

  38. Tang N, Wang L, Esko J, et al. (2004). Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6:485–95

    Article  PubMed  CAS  Google Scholar 

  39. Helmlinger G, Endo M, Ferrara N, et al. (2000). Formation of endothelial cell networks. Nature 405:139–41

    Article  PubMed  CAS  Google Scholar 

  40. Wijelath ES, Murray J, Rahman S, et al. (2002). Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91:25–31

    Article  PubMed  CAS  Google Scholar 

  41. Astrof S, Crowley D, George EL, et al. (2004). Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol 24:8662–70

    Article  PubMed  CAS  Google Scholar 

  42. Fukuda T, Yoshida N, Kataoka Y, et al. (2002). Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res 62:5603–10

    PubMed  CAS  Google Scholar 

  43. Ozaki H, Okamoto N, Ortega S, et al. (1998). Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. Am J Pathol 153:757–65

    PubMed  CAS  Google Scholar 

  44. Klagsbrun M, Vlodavsky I. (1988). Biosynthesis and storage of basic fibroblast growth factor (bFGF) by endothelial cells: implication for the mechanism of action of angiogenesis. Prog Clin Biol Res 266:55–61

    PubMed  CAS  Google Scholar 

  45. Montesano R, Vassalli JD, Baird A, et al. (1986). Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83:7297–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge grant supports from the Canadian Diabetes Association, in honor of the late Glenn W. Liebrock, Canadian Institutes of Health Research, and Internal Research Fund of the Lawson Health Research Institute. We also thank Dr Joyce Bischoff, Vascular Biology Research Group, Children’s Hospital Boston, for helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Z.A., Chan, B.M., Uniyal, S. et al. EDB fibronectin and angiogenesis – a novel mechanistic pathway. Angiogenesis 8, 183–196 (2005). https://doi.org/10.1007/s10456-005-9017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9017-6

Key words:

Navigation