Skip to main content
Log in

On the stability of the positive mass theorem for asymptotically hyperbolic graphs

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The positive mass theorem states that the total mass of a complete asymptotically flat manifold with nonnegative scalar curvature is nonnegative; moreover, the total mass equals zero if and only if the manifold is isometric to the Euclidean space. Huang and Lee (Commun Math Phys 337(1):151–169, 2015) proved the stability of the positive mass theorem for a class of n-dimensional (\(n \ge 3\)) asymptotically flat graphs with nonnegative scalar curvature, in the sense of currents. Motivated by their work and using results of Dahl et al. (Ann Henri Poincaré 14(5):1135–1168, 2013), we adapt their ideas to obtain a similar result regarding the stability of the positive mass theorem, in the sense of currents, for a class of n-dimensional \((n \ge 3)\) asymptotically hyperbolic graphs with scalar curvature bigger than or equal to \(-\,n(n-1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen, B.: IMCF and the stability of the PMT and RPI under \(L^2\) convergence. Ann. Henri Poincaré 19, 1–24 (2017)

    Google Scholar 

  2. Allen, B.: Stability of the PMT and RPI for asymptotically hyperbolic manifolds foliated by IMCF. J. Math. Phys. 59(8), 082501, 18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. (2) 122, 997–1006 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bray, H., Finster, F.: Curvature estimates and the positive mass theorem. Comm. Anal. Geom. 10(2), 291–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chruściel, P.T., Delay, E.: The hyperbolic positive energy theorem. arXiv:1901.05263v2 (2019)

  8. Chruściel, P.T., Galloway, G.J., Nguyen, L., Paetz, T.-T.: On the mass aspect function and positive energy theorems for asymptotically hyperbolic manifolds. Classical Quantum Gravity 35(11), 115015, 38 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chruściel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pacific J. Math. 212(2), 231–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corvino, J.: A note on asymptotically flat metrics on \({\mathbb{R}}^3\) which are scalar-flat and admit minimal spheres. Proc. Amer. Math. Soc. 133(12), 3669–3678 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahl, M., Gicquaud, R., Sakovich, A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré 14(5), 1135–1168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahl, M., Gicquaud, R., Sakovich, A.: Asymptotically hyperbolic manifolds with small mass. Comm. Math. Phys. 325(2), 757–801 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Lima, L.L., Girão, F.: An Alexandrov–Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann. Henri Poincaré 17(4), 979–1002 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, revised edn. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  15. Finster, F.: A level set analysis of the Witten spinor with applications to curvature estimates. Math. Res. Lett. 16(1), 41–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Finster, F., Kraus, M.: Curvature estimates in asymptotically flat Lorentzian manifolds. Canad. J. Math. 57(4), 708–723 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ge, Y., Wang, G., Wu, J.: The GBC mass for asymptotically hyperbolic manifolds. Math. Z. 281(1–2), 257–297 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds, AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, pp. 103–121 (2005)

  19. Huang, L.-H., Jang, H.-C., Martin, D.: Mass rigidity for hyperbolic manifolds. arXiv:1904.12010v1 (2019)

  20. Huang, L.-H., Lee, D.A.: Stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. Comm. Math. Phys. 337(1), 151–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, L.-H., Lee, D.A., Sormani, C.: Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space. J. Reine Angew. Math. 727, 269–299 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Huang, L.-H., Wu, D.: The equality case of the Penrose inequality for asymptotically flat graphs. Trans. Amer. Math. Soc. 367(1), 31–47 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lam, M.-K.G.: The graph cases of the riemannian positive mass and penrose inequalities in all dimensions. arXiv:1010.4256v1 (2010)

  24. Lee, D.A.: On the near-equality case of the positive mass theorem. Duke Math. J. 148(1), 63–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, D.A., Sormani, C.: Near-equality of the Penrose inequality for rotationally symmetric Riemannian manifolds. Ann. Henri Poincaré 13(7), 1537–1556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Michel, B.: Geometric invariance of mass-like asymptotic invariants. J. Math. Phys. 52(5), 052504, 14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Montiel, S., Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. In: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, pp. 279–296 (1991)

  28. Myers, S.B.: Curvature of closed hypersurfaces and non-existence of closed minimal hypersurfaces. Trans. Amer. Math. Soc. 71, 211–217 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sakovich, A., Sormani, C.: Almost rigidity of the positive mass theorem for asymptotically hyperbolic manifolds with spherical symmetry. Gen. Relativity Gravitation 49(9), 125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65(1), 45–76 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities. arXiv:1704.05490v1 (2017)

  32. Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  33. Sormani, C.: How Riemannian Manifolds Converge. Metric and Differential Geometry, Progr. Math., vol. 297, pp. 91–117. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  34. Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differential Geom. 57(2), 273–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80(3), 381–402 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yau, S.-T.: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. Éc. Norm. Sup. (4) 8(4), 487–507 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Lan-Hsuan Huang for pointing out this problem to me, for all her support and motivating discussions. I would also like to thank Carla Cederbaum, Kwok-Kun Kwong and Jason Ledwidge for very valuable comments and discussions, and to Anna Sakovich for a thorough reading of the first draft of this work and for her very helpful observations. In addition, I would like to thank the Carl Zeiss Foundation for the generous support. This work was partially funded by NSF Grant DMS 1452477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando J. Cabrera Pacheco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera Pacheco, A.J. On the stability of the positive mass theorem for asymptotically hyperbolic graphs. Ann Glob Anal Geom 56, 443–463 (2019). https://doi.org/10.1007/s10455-019-09674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-019-09674-9

Keywords

Navigation