Skip to main content
Log in

Vanishing theorem for transverse Dirac operators on Riemannian foliations

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We obtain a vanishing theorem for the half-kernel of a transverse Spinc Dirac operator on a compact manifold endowed with a transversely almost complex Riemannian foliation twisted by a sufficiently large power of a line bundle, whose curvature vanishes along the leaves and is transversely non-degenerate at any point of the ambient manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berline N., Getzler E. and Vergne M. (1992). Heat kernels and Dirac operators. Springer-Verlag, Berlin

    MATH  Google Scholar 

  2. Bismut J.-M. and Vasserot É. (1989). The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle. Comm. Math. Phys. 125: 355–367

    Article  MATH  MathSciNet  Google Scholar 

  3. Borthwick D. and Uribe A. (1996). Almost complex structures and geometric quantization. Math. Res. Lett. 3: 845–861

    MATH  MathSciNet  Google Scholar 

  4. Braverman, M.: Vanishing theorems for the kernel of a Dirac operator. Preprint arXiv:math.DG/9805127

  5. Braverman, M.: Vanishing theorems on covering manifolds. Tel Aviv Topology Conference: Rothenberg Festschrift (1998), pp. 1–23; Contemp. Math., 231, American Mathematical Society, Providence, RI (1999)

  6. Dominguez D. (1998). Finiteness and tenseness theorems for Riemannian foliations. Amer. J. Math. 120: 1237–1276

    Article  MATH  MathSciNet  Google Scholar 

  7. Douglas R.G., Glazebrook J.F., Kamber F.W. and Yu G. (1995). Index formulas for geometric Dirac operators in Riemannian foliations. K-Theory 9: 407–441

    Article  MATH  MathSciNet  Google Scholar 

  8. Glazebrook J.F. and Kamber F.W. (1991). Transversal Dirac families in Riemannian foliations. Commun. Math. Phys. 140: 217–240

    Article  MATH  MathSciNet  Google Scholar 

  9. Glazebrook J.F. and Kamber F.W. (1991). On spectral flow of transversal Dirac operators and a theorem of Vafa-Witten. Annu. Global Anal. Geom. 9: 27–35

    Article  MATH  MathSciNet  Google Scholar 

  10. Glazebrook J.F. and Kamber F.W. (1993). Secondary invariants and chiral anomalies of basic Dirac families. Differ. Geom. Appl. 3: 285–299

    Article  MATH  MathSciNet  Google Scholar 

  11. Guillemin V. (1997). Lectures on spectral theory of elliptic operators. Duke Math. J. 44: 485–517

    Article  MathSciNet  Google Scholar 

  12. Juhl A. (2001). Cohomological Theory of Dynamical Zeta Functions. Progress in Mathematics, 194. Birkhäuser Verlag, Basel

    Google Scholar 

  13. Jung S.D. (2001). The first eigenvalue of the transversal Dirac operator. J. Geom. Phys. 39: 253–264

    Article  MATH  MathSciNet  Google Scholar 

  14. Jung S.D. (2007). Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form. J. Geom. Phys. 57: 1239–1246

    Article  MATH  MathSciNet  Google Scholar 

  15. Jung S.D. and Ko Y.S. (2006). Eigenvalue estimates of the basic Dirac operator on a Riemannian foliation. Taiwanese J. Math. 10: 1139–1156

    MATH  MathSciNet  Google Scholar 

  16. Kamber, F. W., Tondeur, Ph: Foliations and metrics. Differential geometry (College Park, Md., 1981/1982), pp. 103–152, Progr. Math., vol. 32, Birkhauser Boston, Boston, MA (1983)

  17. Kordyukov Yu.A. (1997). Noncommutative spectral geometry of Riemannian foliations. Manuscripta Math. 94: 45–73

    Article  MATH  MathSciNet  Google Scholar 

  18. Kordyukov Yu.A. (2005). Egorov’s theorem for transversally elliptic operators on foliated manifolds and noncommutative geodesic flow. Math. Phys. Anal. Geom. 8: 97–119

    Article  MATH  MathSciNet  Google Scholar 

  19. Kordyukov Yu.A. (2007). The Egorov theorem for transverse Dirac type operators on foliated manifolds. J. Geom. Phys. 57: 2345–2364

    Article  MATH  MathSciNet  Google Scholar 

  20. Ma X. and Marinescu G. (2002). The spinc Dirac operator on high tensor powers of a line bundle. Math. Z. 240: 651–664

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma X. and Marinescu G. (2006). The first coefficients of the asymptotic expansion of the Bergman kernel of the spinc Dirac operator. Internat. J. Math. 17: 737–759

    Article  MATH  MathSciNet  Google Scholar 

  22. Ma X. and Marinescu G. (2007). Holomorphic Morse inequalities and Bergman kernels. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  23. Prokhorenkov I. and Richardson K. (2006). Perturbations of Dirac operators. J. Geom. Phys. 57: 297–321

    Article  MATH  MathSciNet  Google Scholar 

  24. Richardson, K.: Generalized Equivariant Index Theory. Foliations 2005, pp. 373–388, World Sci. Publ., Hackensack, NJ (2006)

  25. Tondeur Ph. (1997). Geometry of Foliations. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri A. Kordyukov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordyukov, Y.A. Vanishing theorem for transverse Dirac operators on Riemannian foliations. Ann Glob Anal Geom 34, 195–211 (2008). https://doi.org/10.1007/s10455-008-9103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-008-9103-2

Keywords

Mathematics Subject Classification (2000)

Navigation