Skip to main content

Advertisement

Log in

Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Biomonitoring by plants allows the correlation of the effects observed to degree of air pollution, and it can be implemented in large cities as a viable alternative of analysis. We assessed Tillandsia recurvata L. species as a biomonitor of air pollution in an urban area, using the passive biomonitoring method. The objectives of this work were to analyze the abundance of T. recurvata, morphophysiological parameters, heavy metals accumulation and its relation as biointegrators, indicating the impact through the change in population density. Five sample points were selected and classified according to vehicle traffic. Points P1 and P2 were classified as high traffic, point P3 was classified as moderate traffic, and points P4 and P5 were classified as low traffic. The abundance analysis and the results obtained for metals analysis (by cluster analysis) were correlated with the intensity of vehicular traffic (P1 > P2 = P3 > P4 = P5). Such result demonstrates that the abundance of T. recurvata is greater in air-pollution-impacted urban areas, thus indicating that T. recurvata absorbs and accumulates metals and can be used in biomonitoring of air pollution in urban areas affected by vehicular traffic. Morphophysiological parameters analyzed showed that the plant’s internal structure is not impacted by urban air pollution due to the plant’s adaptations and her ecological plasticity. Spearman correlation has not shown correlation between the concentrations of the metals studied and morphophysiological parameters analyzed. These results demonstrate the usefulness of the T. recurvata as a passive biomonitor of pollution, with an affordable and immediate application, especially in cities from the Southern Hemisphere, where is abundant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril, G. A., Wannaz, E. D., Mateos, A. C., Invernizzi, R., Plá, R. R., & Pignata, M. L. (2014). Characterization of atmospheric emission sources of heavy metals and trace elements through a local-scale monitoring network using T. capillaris. Ecological Indicators, 40, 153–161.

    Article  CAS  Google Scholar 

  • Agência Nacional de Vigilância Sanitária (ANVISA). [Resolução n. 899 de 29 de Maio de 2003. Determina a publicação do “Guia para validação de métodos analíticos e bioanalíticos”, 2003, in Portuguese] http://portal.anvisa.gov.br/documents/33836/349509/Consolidado%2Bde%2Bnormas%2BCOBIO.pdf/3122249b-48cb-47aa-be78-76f3129a62ba. Accessed 13 August, 2016.

  • Balasooriya, B. L. W. K., Samson, R., Mbikwa, F., Vitharana, U. W. A., Boeckx, P., & Van Meirvenne, M. (2009). Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environmental and Experimental Botany, 65, 386–394.

    Article  CAS  Google Scholar 

  • Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32, 85–100.

    Article  CAS  Google Scholar 

  • Bartoli, C. G., Beltrano, J., Fernandez, L. V., & Caldiz, D. O. (1993). Control of the epiphytic weeds Tillandsia recurvata and Tillandsia aeranthos with different herbicides. Forest Ecology and Management, 59, 289–294.

    Article  Google Scholar 

  • Bermudez, G. M. A., Rodriguez, J. H., & Pignata, M. L. (2009). Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina. Environmental Research, 109, 6–14.

    Article  CAS  Google Scholar 

  • Boeger, M. R. T., & Wisniewski, C. (2003). Comparação da morfologia foliar de espécies arbóreas de três estádios sucessionais distintos de floresta ombrófila densa (Floresta Atlântica) no Sul do Brasil. Revista Brasileira de Biologia, 26, 61–72.

    Google Scholar 

  • Caldiz, D. O., Beltrano, J., Fernández, L. V., & Andía, I. (1993). Survey of Tillandsia recurvata L.: Preference, abundance and its significance for natural florests. Forest Ecology and Management, 57, 161–168.

    Article  Google Scholar 

  • Carvalheiro, C. V., Rocha, L. D., & Maranho, L. T. (2013). The bioindicative potential evaluation of Tabebuia alba (Cham.) Sandwith, Bignoniaceae, in urban atmospheric pollution. Brazilian Archives of Biology and Technology, 56(4), 691–698.

    Article  Google Scholar 

  • Claver, F. K., Alaniz, J. R., & Caldíz, D. O. (1983). Tillandsia spp.: Epiphytic weeds of trees and bushes. Forest Ecology and Management, 6, 367–372.

    Article  Google Scholar 

  • Crayn, D. M., Winter, K., & Smith, J. A. (2004). Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3703–3708.

    Article  CAS  Google Scholar 

  • Figueiredo, A. M. G., Nogueira, C. A., Saiki, M., Milian, F. M., & Domingos, M. (2007). Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environmental Pollution, 145, 279–292.

    Article  CAS  Google Scholar 

  • Fleck, A. S., Moresco, M. B., & Rhoden, C. R. (2016). Assessing the genotoxicity of traffic-related air pollutants by means of plant biomonitoring in cities of a Brazilian metropolitan area crossed by a major highway. Atmospheric Pollution Research, 7, 488–493.

    Article  Google Scholar 

  • Garcia, A. Z., Coyotzin, C. M., Amaro, A. R., Veneroni, D. L., Martínez, L. C., & Iglesias, G. S. (2009). Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L. Atmospheric Chemistry and Physics, 9, 6479–6494.

    Article  CAS  Google Scholar 

  • Godoi, A. F. L., Godoi, R. H. M., Azevedo, R., & Maranho, L. T. (2010). Poluição e a densidade de vegetação: BTEX em algumas áreas públicas de Curitiba – PR, Brasil. Química Nova, 33(4), 827–833.

    Article  CAS  Google Scholar 

  • Goix, S., Resongles, E., Point, D., Oliva, P., Duprey, J. L., Galvez, E., et al. (2013). Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context. Atmospheric Environment, 80, 330–341.

    Article  CAS  Google Scholar 

  • Johansen, D. (1940). Plant microtechnique. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Kersten, R. A. (2010). Epífitas vasculares – histórico, participação taxonômica e aspectos relevantes, com ênfase na Mata Atlântica. Hoehnea, 37, 9–38.

    Article  Google Scholar 

  • Manetti, L. M., Delaporte, R. H., & Laverde-Júnior, A. L. (2009). Metabólitos secundários da família Bromeliaceae. Química Nova, 32(7), 1885–1897.

    Article  CAS  Google Scholar 

  • Masri, S., Kang, C. M., & Koutraakis, P. (2015). Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. Journal of the Air and Waste Management Association, 65, 287–297.

    Article  CAS  Google Scholar 

  • Moreira, T. C. L., Oliveira, R. C., Amato, L. F. L., Kang, C. M., Saldiva, P. H. N., & Saiki, M. (2016). Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environment International, 91, 271–275.

    Article  CAS  Google Scholar 

  • Pignata, M. L., Gudiño, G. L., Wannaz, E. D., Pla, R. R., González, C. M., Carreras, H. A., et al. (2002). Atmospheric quality and distribution of heavy metal in Argentina employing Tillandsia capillaris as a biomonitor. Environmental Pollution, 120, 59–68.

    Article  CAS  Google Scholar 

  • Recinas, S. M., & Guzmán, J. M. (2012). Temperature and water requirements for germination and effects of discontinuous hydration on germinated seed survival in Tillandsia recurvata L. Plant Ecology, 213, 1069–1079.

    Article  Google Scholar 

  • Rizzini, C. T. (1976). Tratado de fitogeografia do Brasil (Vol. 1). São Paulo: Edusp/Hucitec.

    Google Scholar 

  • Rodriguez, J. H., Pignata, M. L., Fangmeier, A., & Klumpp, A. (2010). Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany). Chemosphere, 80, 208–2015.

    Article  CAS  Google Scholar 

  • Rodriguez, J. H., Weller, S. B., Wannaz, E. D., Klumpp, A., & Pignata, M. L. (2011). Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris. Ecological Indicators, 11, 1673–1680.

    Article  CAS  Google Scholar 

  • Sakai, W. S. (1973). Simple method for differential staining of paraffin embedded plant material using toluidine blue. Stain Technology, 48, 247–249.

    Article  CAS  Google Scholar 

  • Sánchez-Chardi, A. (2016). Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmospheric Environment, 131, 352–359.

    Article  CAS  Google Scholar 

  • Segecin, S., & Scatena, V. L. (2004). Anatomia de escapos de Tillandsia L. (Bromeliaceae) dos Campos Gerais do Paraná, Brasil. Revista brasileira de botanica, 27(3), 515–525.

    Google Scholar 

  • Silvestro, D., Zizka, G., & Schulte, K. (2014). Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution, 68(1), 163–175.

    Article  Google Scholar 

  • Skoog, D. A., Joller, F. J., & Nieman, T. A. (2009). Princípios de análise instrumental (6th ed.). Porto Alegre/São Paulo: Artmed - Bookman.

    Google Scholar 

  • Techato, K., Salaeh, A., & Beem, N. C. (2014). Use of atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) as biomonitor. APCBEE Procedia, 10, 49–53.

    Article  CAS  Google Scholar 

  • Vanz, A., Mirlean, N., & Baisch, P. (2003). Avaliação de poluição do ar por chumbo particulado: uma abordagem geoquímica. Química Nova, 26, 25–29.

    Article  CAS  Google Scholar 

  • Vasconcelos, A. L., Vasconcelos, A. L., Ximenes, E. A., & Randau, K. P. (2013). Tillandsia recurvata L. (Bromeliaceae): aspectos farmacognósticos. Revista de ciências farmacêuticas básica e aplicada, 34, 151–159.

    Google Scholar 

  • Vianna, N. A., Gonçalves, D., D’Oliveira Júnior, D., & Andrade, L. R. (2010). Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor. Environmental Science and Pollution Research, 18, 416–427.

    Article  CAS  Google Scholar 

  • Wannaz, E. D., Carreras, H. A., Pérez, C. A., & Pignata, M. L. (2006). Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Science of the Total Environment, 361, 267–278.

    Article  CAS  Google Scholar 

  • Wannaz, E. D., Carreras, H. A., Rodriguez, J. H., & Pignata, M. L. (2012). Use of biomonitors for the identification of heavy metals emission sources. Ecological Indicators, 20, 163–169.

    Article  CAS  Google Scholar 

  • Wester, S., & Zotz, G. (2010). Growth and survival of Tillandsia flexuosa on electrical cables in Panama. Journal of Tropical Ecology, 26, 123–126.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Universidade Tecnológica Federal do Paraná (UTFPR) and the Universidade Positivo (UP) for providing the infrastructure and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Teresinha Maranho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazzetta, K.D., Ramsdorf, W.A. & Maranho, L.T. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia 35, 125–137 (2019). https://doi.org/10.1007/s10453-018-9545-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-018-9545-3

Keywords

Navigation