Skip to main content

Advertisement

Log in

Interannual variability of pollen productivity and transport in mid-North America from 1997 to 2009

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Understanding the causes of interannual variability in atmospheric pollen concentration is an important but elusive goal for public health and environmental change. We analyzed long-term daily records of pollen counts from urban Kansas City, Missouri, USA collected from 1997 to 2009 for three pollen groups: Ambrosia, Poaceae, and a third group which is mostly composed of arboreal pollen types. The annual pollen index varied from 8,368 to 80,822 over the thirteen-year period. Although Ambrosia pollen is often thought to be associated with droughts and disturbance, years with high Ambrosia pollen were associated with high summer precipitation to the south of Kansas City. Years with high Poaceae pollen were associated with high spring precipitation to the south of the city. In support of the southern influence to Kansas City pollen, Ambrosia and Poaceae pollen mostly arrived on southern winds. In contrast to the other two pollen groups, the arboreal pollen was most associated with growing season precipitation to the east of Kansas City, although it was still highest on days with southern winds. Based on the correlations with climate, the severity of an upcoming allergy season may be predicted with early-season precipitation data, while short-term severity can be forecast from local weather patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnes, C., Pacheco, F., Landuyt, J., Hu, F., & Portnoy, J. (2001). The effect of temperature, relative humidity and rainfall on airborne ragweed pollen concentrations. Aerobiologia, 17, 61–68.

    Article  Google Scholar 

  • Cecchi, L., Malaspina, T. T., Albertini, R., Zanca, M., Ridolo, E., Usberti, I., et al. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23(2), 145–151. doi:10.1007/s10453-007-9060-4.

    Article  Google Scholar 

  • Chamecki, M., Meneveau, C., & Parlange, M. B. (2009). Large eddy simulation of pollen transport in the atmospheric boundary layer. Journal of Aerosol Science, 40(3), 241–255. doi:10.1016/j.jaerosci.2008.11.004.

    Article  CAS  Google Scholar 

  • Craine, J. M., Towne, E. G., Joern, A., & Hamilton, R. G. (2009). Consequences of climate variability for the performance of bison in tallgrass prairie. Global Change Biology, 15(3), 772–779. doi:10.1111/j.1365-2486.2008.01769.x.

    Article  Google Scholar 

  • Edmonds, R. L. (1979). Aerobiology: The ecological systems approach. Stroundsburg, Pennsylvania: Academic Press.

    Google Scholar 

  • Garcia-Mozo, H., Perez-Badia, R., Fernandez-Gonzalez, F., & Galan, C. (2006). Airborne pollen sampling in Toledo, central Spain. Aerobiologia, 22(1), 55–66. doi:10.1007/s10453-005-9015-6.

    Article  Google Scholar 

  • Kinney, P. L. (2008). Climate change, air quality, and human health. American Journal of Preventive Medicine, 35(5), 459–467. doi:10.1016/j.amepre.2008.08.025.

    Article  Google Scholar 

  • Knapp, A. K., Briggs, J. M., & Koelliker, J. K. (2001). Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems, 4(1), 19–28.

    Article  Google Scholar 

  • Mahura, A. G., Korsholm, U. S., Baklanov, A. A., & Rasmussen, A. (2007). Elevated birch pollen episodes in Denmark: Contributions from remote sources. Aerobiologia, 23(3), 171–179. doi:10.1007/s10453-007-9061-3.

    Article  Google Scholar 

  • Mao, Y. Y., & Huang, S. Q. (2009). Pollen resistance to water in 80 angiosperm species: Flower structures protect rain-susceptible pollen. New Phytologist, 183(3), 892–899. doi:10.1111/j.1469-8137.2009.02925.x.

    Article  Google Scholar 

  • Martin, M. D., Chamecki, M., Brush, G. S., Meneveau, C., & Parlange, M. B. (2009). Pollen clumping and wind dispersal in an invasive angiosperm. American Journal of Botany, 96(9), 1703–1711. doi:10.3732/ajb.0800407.

    Article  Google Scholar 

  • Pashley, C. H., Fairs, A., Edwards, R. E., Bailey, J. P., Corden, J. M., & Wardlaw, A. J. (2009). Reproducibility between counts of airborne allergenic pollen from two cities in the East Midlands, UK. Aerobiologia, 25(4), 249–263. doi:10.1007/s10453-009-9130-x.

    Article  Google Scholar 

  • Pendell, G. G., Hu, F., Portnoy, J., & Barnes, C. (2007). Global climatic change and its impact on oak pollen season in the Midwestern US. Annals of Allergy, Asthma & Immunology, 98(1), A107–A107.

    Google Scholar 

  • Pendell, G. G., Hu, F., Pacheco, F., Portnoy, J., & Barnes, C. (2008). Seasonal and daily patterns of Cupressaceae pollen in Kansas City. Journal of Allergy and Clinical Immunology, 121(2), 81.

    Article  Google Scholar 

  • Perez, C. F., Gassmann, M. I., & Covi, M. (2009). An evaluation of the airborne pollen-precipitation relationship with the superposed epoch method. Aerobiologia, 25(4), 313–320. doi:10.1007/s10453-009-9135-5.

    Article  Google Scholar 

  • Peternel, R., Culig, J., Hrga, I., & Hercog, P. (2006). Airborne ragweed (Ambrosia artemisiifolia L.) pollen concentrations in Croatia, 2002–2004. Aerobiologia, 22(3), 161–168. doi:10.1007/s10453-006-9028-9.

    Article  Google Scholar 

  • Portnoy, J., & Barnes, C. (2003). Clinical relevance of spore and pollen counts. Immunology and Allergy Clinics of North America, 23(3), 389–410. doi:10.1016/s0889-8561(03)00028-6.

    Article  Google Scholar 

  • Reese, C. A., & Liu, K. B. (2005). Interannual variability in pollen dispersal and deposition on the tropical Quelccaya Ice Cap. Professional Geographer, 57(2), 185–197.

    Article  Google Scholar 

  • Sikoparija, B., Radisic, P., Pejak, T., & Simic, S. (2006). Airborne grass and ragweed pollen in the southern Panonnian Valley—consideration of rural and urban environment. Annals of Agricultural and Environmental Medicine, 13(2), 263–266.

    Google Scholar 

  • Smith, M., Skjoth, C. A., Myszkowska, D., Uruska, A., Puc, M., Stach, A., et al. (2008). Long-range transport of Ambrosia pollen to Poland. Agricultural and Forest Meteorology, 148(10), 1402–1411. doi:10.1016/j.agrformet.2008.04.005.

    Article  Google Scholar 

  • Smith, M., Emberlin, J., Stach, A., Rantio-Lehtimaki, A., Caulton, E., Thibaudon, M., et al. (2009). Influence of the North Atlantic oscillation on grass pollen counts in Europe. Aerobiologia, 25(4), 321–332. doi:10.1007/s10453-009-9136-4.

    Article  Google Scholar 

  • Stepalska, D., Szczepanek, K., & Myszkowska, D. (2002). Variation in Ambrosia pollen concentration in southern and central Poland in 1982–1999. Aerobiologia, 18(1), 13–22.

    Article  Google Scholar 

  • Stepalska, D., Myszkowska, D., Wolek, J., Piotrowicz, K., & Obtulowicz, K. (2008). The influence of meteorological factors on Ambrosia pollen loads in Cracow, Poland, 1995–2006. Grana, 47(4), 297–304. doi:10.1080/00173130802492849.

    Article  Google Scholar 

  • Sugita, S. (1994). Pollen representation of vegetation in quaternary sediments: Theory and method in patchy vegetation. Journal of Ecology, 82, 881–897.

    Article  Google Scholar 

  • Sugita, S. (2007). Theory of quantitative reconstruction of vegetation II: All you need is love. Holocene, 17(2), 243–257.

    Article  Google Scholar 

  • Towne, E. G. (2002). Vascular plants of Konza prairie biological station: An annotated checklist of species in a Kansas tallgrass prairie. Sida, 20, 269–294.

    Google Scholar 

  • Weaver, J. E. (1968). Prairie plants and their environment: A 50 year study in the Midwest. Lincoln, Nebraska, USA: University of Nebraska Press.

    Google Scholar 

  • Ziska, L. H., Epstein, P. R., & Schlesinger, W. H. (2009). Rising CO2, climate change, and public health: Exploring the links to plant biology. Environmental Health Perspectives, 117(2), 155–158. doi:10.1289/ehp.11501.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Julie Commerford for providing cartographic assistance. Jay Portnoy, Julie Landuyt, Freddy Pachecho, Frank Hu, and Minati Dhar provided the original pollen data from Children’s Mercy Hospital. Mary Knapp provided data from three weather stations. Konza Prairie Biological Station provided weather data from Kansas. We appreciate helpful discussions with Doug Goodin and John Harrington Jr. This research was supported by grant BCS-0821959 from the National Science Foundation to K.K.M. The data collection has been supported at times by Marrion-Merril-Dow and the Kansas City Allergy Society and throughout its history by Children’s Mercy Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra K. McLauchlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLauchlan, K.K., Barnes, C.S. & Craine, J.M. Interannual variability of pollen productivity and transport in mid-North America from 1997 to 2009. Aerobiologia 27, 181–189 (2011). https://doi.org/10.1007/s10453-010-9186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-010-9186-7

Keywords

Navigation