Skip to main content
Log in

Recovery of germinating fungal conidia from the nasal cavity after environmental exposure

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Background

The expression of fungal allergens is increased by the germination of conidia. We assessed the state of germination of fungal conidia recovered by nasal lavage after environmental exposure.

Methods

Nasal lavage was performed on twenty adults at three stages: the start of the experiment, after 1 h indoors, and after 1 h outdoors. One half of the lavage liquid was immediately treated to prevent in-vitro germination and stained with periodic acid Schiff (PAS) to enable identification of germinated and ungerminated conidia. The untreated half of the lavage liquid was cultured on nutrient agar plates to enumerate and identify viable fungi.

Results

PAS staining showed that both ungerminated and germinated conidia, and hyphal fragments, were present in the nasal cavity. The most prevalent fungi recovered were Aspergillus, Alternaria, Cladosporium, Epicoccum, Penicillium, and Yeast species. The number of viable fungi recovered after 1 h indoors was significantly less than after 1 h outdoors (P < 0.01).

Conclusions

Viable fungi and germinating conidia, in addition to ungerminated conidia and hyphal fragments, were present in the nasal cavity after both indoor and outdoor exposure. This provides novel insight into the pathogenicity of exposure to fungal aeroallergens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PAS:

Periodic acid Schiff

V8:

20% Vegetable juice nutrient agar

RB:

Rose-Bengal chloramphenicol nutrient agar

References

  • Andersson, M., Downs, S. H., Mitakakis, T. Z., Leuppi, J. D., & Marks, G. B. (2003). Natural exposure to Alternaria spores induces allergic rhinitis symptoms in sensitized children. Pediatric Allergy and Immunology, 14(2), 100–105.

    Article  Google Scholar 

  • Braun, H., Stammberger, H., Buzina, W., Freudenschuss, K., Lackner, A., & Beham, A. (2003). Incidence and detection of fungi and eosinophilic granulocytes in chronic rhinosinusitis. Laryngo Rhino Otologie, 82(5), 330–340.

    Article  CAS  Google Scholar 

  • Burge, H. A., Pierson, D. L., Groves, T. O., Strawn, K. F., & Mishra S. K. (2000). Dynamics of airborne fungal populations in a large office building. Current Microbiology, 40(1), 10–16.

    Article  CAS  Google Scholar 

  • Burge, H. P., Solomon, W. R., & Boise, J. R. (1977). Comparative merits of eight popular media in aerometric studies of fungi. Journal of Allergy and Clinical Immunology, 60(3), 199–203.

    Article  CAS  Google Scholar 

  • Chew, G. L., Rogers, C., Burge, H. A., Muilenberg, M. L., & Gold, D. R. (2003). Dustborne and airborne fungal propagules represent a different spectrum of fungi with differing relations to home characteristics. Allergy, 58(1), 13–20.

    Article  CAS  Google Scholar 

  • Cocks, T. M., & Moffatt, J. D. (2001). Protease-activated receptor-2 (PAR-2) in the airways. Pulmonary Pharmacology and Therapeutics, 14(3), 183–191.

    Article  CAS  Google Scholar 

  • Cramer, R. A., & Lawrence, C. B. (2003). Cloning of a gene encoding an alt a 1 isoallergen differentially expressed by the necrotrophic fungus Alternaria brassicicola during arabidopsis infection. Applied and Environmental Microbiology, 69(4), 2361–2364.

    Article  CAS  Google Scholar 

  • Dennis, D. P. (2003). Chronic sinusitis: Defective t-cells responding to superantigens, treated by reduction of fungi in the nose and air. Archives of Environmental Health, 58(7), 433–441.

    Google Scholar 

  • Downs, S. H., Mitakakis, T. Z., Marks, G. B., Car, N. G., Belousova, E. G., Leuppi, J. D., Xuan, W., Downie, S. R., Tobias, A., & Peat, J. K. (2001). Clinical importance of Alternaria exposure in children. American Journal of Respiratory and Critical Care Medicine, 164(3), 455–459.

    CAS  Google Scholar 

  • Green, B. J., Mitakakis, T. Z., & Tovey, E. R. (2003). Allergen detection from 11 fungal species before and after germination. Journal of Allergy and Clinical Immunology, 111(2), 285–289.

    Article  Google Scholar 

  • Green B. J., Tovey E. R., Sercombe J. K., Blachere F. M., Beezhold D. H., & Schmechel D. (2006). Airborne fungal fragments and allergenicity, Medical Mycology, 44(Suppl. 1), S245–S255.

    Google Scholar 

  • Greiff, L., Pipkorn, U., Alkner, U., & Persson, C.G. (1990). The ‘nasal pool’ device applies controlled concentrations of solutes on human nasal airway mucosa and samples its surface exudations/secretions. Clinical and Experimental Allergy, 20(3), 253–259.

    Google Scholar 

  • Karpovich-Tate, N., Dewey, F. M., Smith, E. J., Lund V. J., Gurr P. A., & Gurr, S. J. (2000). Detection of fungi in sinus fluid of patients with allergic fungal rhinosinusitis. Acta Oto-Laryngology, 120(2), 296–302.

    Article  CAS  Google Scholar 

  • Kauffman, H. F., Tomee, J. F., van de Riet, M. A., Timmerman, A. J., & Borger, P. (2000). Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. Journal of Allergy and Clinical Immunology, 105(6 Pt 1), 1185–1193.

    Article  CAS  Google Scholar 

  • Kauffman, H. F. (2003). Interaction of environmental allergens with airway epithelium as a key component of asthma. Current Allergy and Asthma Reports, 3(2), 101–108.

    Google Scholar 

  • Keck, T., Leiacker, R., Riechelmann, H., & Rettinger, G. (2000). Temperature profile in the nasal cavity. Laryngoscope, 110(4), 651–654.

    Article  CAS  Google Scholar 

  • Knutsen, A. P., Bellone, C., & Kauffman, H. (2002). Immunopathogenesis of allergic bronchopulmonary aspergillosis in cystic fibrosis. Journal of Cystic Fibrosis, 1(2), 76–89.

    Article  CAS  Google Scholar 

  • Lackner A., Freudenschuss K., Buzina W., Stammberger H., Panzitt T., Schosteritsch S., & Braun H. (2004). From when on can fungi be identified in nasal mucus of humans? Laryngo Rhino Otologie, 83(2), 117–121.

    Article  CAS  Google Scholar 

  • Lake, F. R., Froudist, J. H., McAleer, R., Gillon, R. L., Tribe, A. E., & Thompson, P. J. (1991). Allergic bronchopulmonary fungal disease caused by Bipolaris and Curvularia. Australian and New Zealand Journal of Medicine, 21, 871–874.

    CAS  Google Scholar 

  • McManus, J. F. A. (1946). Histological demonstration of mucin after periodic acid. Nature, 158(4006), 202–202

    Google Scholar 

  • Meletiadis, J., Meis, J. F., Mouton, J. W., & Verweij, P. E. (2001). Analysis of growth characteristics of filamentous fungi in different nutrient media. Journal of Clinical Microbiology, 39(2), 478–484.

    Article  CAS  Google Scholar 

  • Mitakakis, T. Z., Barnes, C., & Tovey, E. R. (2001). Spore germination increases allergen release from Alternaria. Journal of Allergy and Clinical Immunology, 107(2), 388–390.

    Article  CAS  Google Scholar 

  • Passone, M. A., Resnik, S. L., & Etcheverry, M. G. (2005). In vitro effect of phenolic antioxidants on germination, growth and aflatoxin b accumulation by peanut Aspergillus section flavi. Journal of Applied Microbiology, 99(3), 682–691.

    Article  CAS  Google Scholar 

  • Ponikau, J., Sherris, D., Kern, E., Homburger, H., Frigas, E., Gaffey, T., & Roberts, G. (1999). The diagnosis and incidence of allergic fungal sinusitis. Mayo Clinic Proceedings, 74(9), 877–884.

    Article  CAS  Google Scholar 

  • Ponikau, J. U., Sherris, D.A., Kita, H., Kern, E. B. (2002). Intranasal antifungal treatment in 51 patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 110(6), 862–866.

    Article  CAS  Google Scholar 

  • Proctor, D. F., Andersen, I., & Lundqvis, G. (1973). Clearance of inhaled particles from human nose. Archives of Internal Medicine, 131(1), 132–139.

    Article  CAS  Google Scholar 

  • Reed, C. E., & Kita, H. (2004). The role of protease activation of inflammation in allergic respiratory diseases (review). Journal of Allergy and Clinical Immunology, 114(5), 997–1008.

    Article  CAS  Google Scholar 

  • Robinson, B. W., Venaille, T. J., Mendis, A. H., & McAleer, R. (1990). Allergens as proteases: An Aspergillus fumigatus proteinase directly induces human epithelial cell detachment. Journal of Allergy and Clinical Immunology, 86(5), 726–731.

    Article  CAS  Google Scholar 

  • Schubert, M. S., Hutcheson, P. S., Graff, R. J., Santiago L., & Slavin R.G. (2004) Hla-dqb1 *03 in allergic fungal sinusitis and other chronic hypertrophic rhinosinusitis disorders. Journal of Allergy and Clinical Immunology, 114(6), 1376–1383.

    Article  CAS  Google Scholar 

  • Sporik, R. B., Arruda, L. K., Woodfolk, J., & Chapman, M. D., Platts-Mills, T. A. (1993). Environmental exposure to Aspergillus fumigatus allergen (Asp f 1). Clinical and Experimental Allergy, 23(4), 326–331.

    Article  CAS  Google Scholar 

  • Su, W., Liu, C., Hung, S., & Tsai, W. (1983). Bacteriological study in chronic maxillary sinusitis. Laryngoscope, 93(7), 931–934.

    Article  CAS  Google Scholar 

  • Tafaghodi, M., Abolghasem Sajadi Tabassi, S., Jaafari, M. R., Zakavi, S. R., & Momen-Nejad, M. (2004). Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. International Journal of Pharmaceutics, 280(1–2), 125–135.

    Article  CAS  Google Scholar 

  • Weschta, M., Rimek, D., Formanek, M., Polzehl, D., Podbielski, A., & Riechelmann, H. (2004). Topical antifungal treatment of chronic rhinosinusitis with nasal polyps: A randomised, double-blind clinical trial. Journal of Allergy and Clinical Immunology, 113(6), 1122–1128.

    Article  CAS  Google Scholar 

  • Yang, Z., Jaeckisch, S. M., & Mitchell, C. G. (2000). Enhanced binding of Aspergillus fumigatus spores to a549 epithelial cells and extracellular matrix proteins by a component from the spore surface and inhibition by rat lung lavage fluid. Thorax, 55(7), 579–584.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Health and Medical Research Council, Australia (Grant Number 253818). Volunteer participation was approved by the University of Sydney Human Research Ethics Committee (Approval Number 3577). Facilities for PAS staining were kindly provided by the Histopathology Laboratory, Department of Pathology, The University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason K. Sercombe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sercombe, J.K., Green, B.J. & Tovey, E.R. Recovery of germinating fungal conidia from the nasal cavity after environmental exposure. Aerobiologia 22, 295–304 (2006). https://doi.org/10.1007/s10453-006-9043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-006-9043-x

Keywords

Navigation