Skip to main content
Log in

Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

In the past decade, extreme hydrological events were expressed with extreme droughts and floods in temperate regions. The aim of this paper is to explain how such changes in hydrology can influence cyanobacterial populations in floodplain ecosystems. We therefore analyzed a 6-year (2003–2008) study of the phytoplankton in the Kopački Rit floodplain, one of the largest natural floodplains in the middle section of the Danube River (Europe). During the studied period, the shallow floodplain lake shifted between a state of turbid water, characterized by high phytoplankton biomass and regular appearance of cyanobacteria blooms, to a state of clear water with very low phytoplankton biomass and absence of cyanobacteria, and back to the turbid state. Apparently, the major forces driving the cyclic shift were closely related to extremely high and long-lasting flood events. Significant increase in water level, low hydraulic residence time of water, decrease in transparency and low-light climate, together with mass developed aquatic macrophyte vegetation in the whole inundated floodplain were unfavorable conditions for growth and proliferation of cyanobacteria. With the establishment of the flood regime characterized by long-lasting periods without flooding, in-lake processes prevailed leading to cyanobacterial bloom. The most successful were filamentous non-N-fixing cyanobacteria tolerant to mixed and low-light conditions (Planktothrix and Limnothrix) and invasive species Cylindrospermopsis raciborskii. Their massive development led to the establishment of a phytoplankton steady state. All our results demonstrate that the altered intensity and frequency of flood events will have pronounced effects on the appearance of cyanobacterial blooms and generally on alternative stable states in the floodplain. Relating to this, management objectives should be focused on qualifications of changes in hydrology and projecting those effects for potential floodplain restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrantes N, Antunes SC, Pereira MJ, Gonçalves F (2006) Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecol 29:54–64. doi:10.1016/j.actao.2005.07.006

    Article  Google Scholar 

  • Anagnostidis K, Komárek J (1985) Modern approach to the classification system of cyanophytes. 1. Introduction. Arch Hydrobiol Suppl 71 (1/2):291–302

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Suppl 80 (1/4):327–472

  • APHA (American Public Health Association) (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Berger C, Sweers HE (1988) The Ijsselmeer and its phytoplankton–with special attention to the suitability of the lake as a habitat for Oscillatoria agardhii Gom. J Plankton Res 10:579–599. doi:10.1093/plankt/10.4.579

    Article  CAS  Google Scholar 

  • Briand JF, Robillot C, Quiblier-Llobéras C, Humbert JF, Couté A, Bernard C (2002) Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. Water Res 36:3183–3192. doi:10.1016/S0043-1354(02)00016-7

    Article  PubMed  CAS  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133. doi:10.1017/S0376892902000085

    Article  Google Scholar 

  • Brown LE, Hannah DM, Milner AM (2007) Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpack’s. Global Change Biol 13:958–966. doi:10.1111/j.1365-2486.2007.01341.x

    Article  Google Scholar 

  • Buijse AD, Coops H, Staras M, Jans LH, van Geest GJ, Grift RE, Ibelings BW, Oosterberg W, Roozen FCJM (2002) Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw Biol 47:889–907. doi:10.1046/j.1365-2427.2002.00915.x

    Article  Google Scholar 

  • Cattaneo A, Galanti G, Gentinetta S, Romo S (1998) Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshw Biol 39:725–740. doi:10.1046/j.1365-2427.1998.00325.x

    Article  Google Scholar 

  • Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems–workshop conclusions. Hydrobiologia 506:23–27. doi:10.1023/B:HYDR.0000008595.14393.77

    Article  Google Scholar 

  • de Huszar VLM, Reynolds CS (1997) Phytoplankton periodicity and sequences of dominance in an Amazonian floodplain lake (Lago Batata, Pará, Brazil): responses to gradual environmental change. Hydrobiologia 346:169–181. doi:10.1023/A:1002926318409

    Article  Google Scholar 

  • Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12. doi:10.1023/A:1004155810302

    Article  CAS  Google Scholar 

  • Dokulil MT, Donabaum K, Pall K (2006) Alternative stable states in floodplain ecosystems. Ecohydrol Hydrobiol 6:37–42

    Google Scholar 

  • EEA (European Environment Agency) (2007) Climate change and water adaptation issues. EEA Tech. Report no. 2/2007, Copenhagen, Denmark

  • Figueredo CC, Giani A, Bird DF (2007) Does allelopathy contribute to Cylindrospermopsis raciborskii blooms occurrence and geographic expansion? J Phycol 43:256–265. doi:10.1111/j.1529-8817.2007.00333.x

    Article  Google Scholar 

  • Gross EM, Hilt S, Lombardo P, Mulderij G (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton–state of art and open questions. Hydrobiologia 584:77–88. doi:10.1007/s10750-007-0591-z

    Article  CAS  Google Scholar 

  • Head RM, Jones RI, Bailey-Watts AE (1999) An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshw Biol 41:759–769. doi:10.1046/j.1365-2427.1999.00421.x

    Article  Google Scholar 

  • Hein T, Schagerl M, Heiler G, Schiemer F (1996) Chlorophyll-a and hydrochemical dynamics in a backwater system of the Danube, controlled by hydrology. Arch Hydrobiol Suppl 113:463–470

    CAS  Google Scholar 

  • Hein T, Baranyi C, Heiler G, Holarek C, Riedler P, Schiemer F (1999) Hydrology as a major factor determining plankton development in two floodplain segments and the River Danube, Austria. Arch Hydrobiol Suppl 115:439–452

    Google Scholar 

  • Hein T, Baranyi C, Herndl GJ, Wanek W, Schiemer F (2003) Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshw Biol 48:220–232. doi:10.1046/j.1365-2427.2003.00981.x

    Article  Google Scholar 

  • Hindak F, Cyrus Z, Marvan P, Javornicky P, Komarek J, Ettl H, Rosa K, Sladečkova A, Popovsky J, Punčocharova M, Lhotsky O (1978) Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava

    Google Scholar 

  • Horvatić J, Mihaljević M, Stević F (2003) Algal growth potential of Chlorella kessleri Fott et Nov. in comparison with in situ microphytoplankton dynamics in the water of Lake Sakadaš marshes. Period Biol 105:307–312

    Google Scholar 

  • Hustedt F (1976) Bacillariophyta. Otto Koeltz Science Publishers, Koenigstein

    Google Scholar 

  • Ibelings BW, Portielje R, Lammens EHRR, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007) Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems 10:4–16. doi:10.1007/s10021-006-9009-4

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: the physical science basis: summary for policymakers. Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Isvánovics V, Pettersson K, Rodrgio MA, Pierson D, Padisák J, Colom E (1993) Gloeotrichia echinulata, a colonial cyanobacterium with a unique phosphorus uptake and life strategy. J Plankton Res 15:531–552

    Article  Google Scholar 

  • Isvánovics V, Shafik HM, Présing M, Juhos S (2000) Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshw Biol 43:257–275. doi:10.1046/j.1365-2427.2000.00549.x

    Article  Google Scholar 

  • Janse JH, De Senerpont Domis LN, Scheffer M, Lijklema L, Liere LV, Klinge M, Mooijb WM (2008) Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PC Lake. Limnologica 38:203–219. doi:10.1016/j.limno.2008.06.001

    CAS  Google Scholar 

  • Javornický P, Komárková J (1973) The changes in several parameters of plankton primary productivity in Slapy Reservoir 1960–1967, their mutual correlations and correlations with the main ecological factors. In: Hrbáček J, Straškraba M (eds) Hydrobiological studies. Academia, Prague, pp 155–211

    Google Scholar 

  • Junk WJ (1999) The flood pulse concept of large rivers: learning from the tropics. Arch Hydrobiol 115:261–280

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river floodplain system. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kiss KT, Schmidt A, Ács É (1996) Sampling strategies for phytoplankton investigations in a large river (River Danube, Hungary). In: Whitton BA, Rott E (eds) Use of algae for monitoring rivers II. Institut für Botanik, Universität Innsbruck, Innsbruck, pp 179–185

    Google Scholar 

  • Kiss KT, Pápista ÉK, Ács É, Makk J (2000) Comparison of phytoplankton of 80s and late 90s in a large side arm of the Danube River (Soroksár-Danube–Hungary). In: Horvatić J (ed) Proceedings of 33rd conference of the international association for Danube research. Osijek, Croatia, 3–9 September 2000. J. J. Strossmayer University, Faculty of education, Croatian Ecological Society, Osijek, pp 103–110

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol Stud 56:247–345

    Google Scholar 

  • Komárková J (1989) Primárni produkce ř as ve slatkovodních ekosysteméch. In: Dykyová D (ed) Metody studia ecosystémů. Academia Praha, Praha, pp 330–347

    Google Scholar 

  • Meffert ME, Oberhäuser R, Overbeck J (1981) Morphology and Taxonomy of Oscillatoria redekei (Cyanophyta). Brit Phycol J 16:107–114. doi:10.1080/00071618100650091

    Article  Google Scholar 

  • Mihaljević M, Getz D, Tadić Z, Živanović B, Gucunski D, Topić J, Kalinović I, Mikuska J (1999) Kopački Rit–research survey and bibliography. Croatian Academy of Arts and Sciences, Zagreb

    Google Scholar 

  • Mihaljević M, Stević F, Horvatić J, Hackenberger Kutuzović B (2009) Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618:77–88. doi:10.1007/s10750-008-9550-6

    Article  Google Scholar 

  • Mihaljević M, Špoljarić D, Stević F, Cvijanović V, Hackenberger Kutuzović B (2010) The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. 40:260–268. doi: 10.1016/j.limno.2009.09.001

  • Mikuska J (1979) Ekološke osobine i zaštita specijalnog zoološkog rezervata “Kopački rit” s posebnim osvrtom na ekologiju kralježnjaka. Dissertation, University of Zagreb

  • Mischke U, Nixdorf B (2003) Equilibrium phase conditions in shallow German lakes: how Cyanobacteria species establish a steady state in late summer. Hydrobiologia 502:123–132. doi:10.1023/B:HYDR.0000004275.81490.92

    Article  Google Scholar 

  • Mooij WM, Janse JH, Domis LN, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454. doi:10.1007/s10750-007-0600-2

    Article  CAS  Google Scholar 

  • Muylaert K, Declerck S, Van Wichelen J, De Meester L, Vyverman W (2006) An evaluation of role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica 36:69–78

    Google Scholar 

  • Nixdorf B, Mischke U, Rücker J (2003) Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes–an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502:111–121. doi:10.1023/B:HYDR.0000004274.65831.e5

    Article  Google Scholar 

  • Nõges T, Järvet A, Kisand A, Loigu E, Skakalski B, Nõges P (2007) Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia 584:253–264. doi:10.1007/s10750-007-0603-z

    Article  Google Scholar 

  • Nõges T, Laugaste R, Nõges P, Tõnno I (2008) Critical N:P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia 599:77–86. doi:10.1007/978-1-4020-8379-2_9

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, Assessment and Control. OECD Publications, Paris

    Google Scholar 

  • Oosterberg W, Staras M, Bogdan L, Buijse AD, Constantinescu A, Coops H, Hanganu J, Ibelings BW, Menting GAM, Nãvodaru I, Török L (2000) Ecological gradients in the danube delta lakes–present state and man-induced changes. RIZA, Danube Delta National Institute Romania and Danube Delta Biosphere Reserve Authority Romania, the Netherlands. RIZA rapport no. 2000.015

  • Ortega-Mayagoitia E, Rojo C, Rodrigo MA (2003) Controlling factors of phytoplankton taxonomic structure in wetlands: an experimental approach. Hydrobiologia 502:177–186. doi:10.1023/B:HYDR.0000004280.74279.74

    Article  Google Scholar 

  • Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptative cyanobacterium: worldwide distribution and review of its ecology. Arch Hydrobiol Suppl 107:563–593

    Google Scholar 

  • Padisák J, Isvánovics V (1997) Differential response of bluegreen algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Int Ver theor angewan Limnol Verh 26:574–580

    Google Scholar 

  • Padisák J, Reynolds CS (2003) Shallow lakes: the absolute, the relative, the functional and the progmatic. Hydrobiologia 506–509:1–11. doi:10.1023/B:HYDR.0000008630.49527.29

    Article  Google Scholar 

  • Padisák J, Borics G, Fehér G, Grigorszky I, Oldal I, Schmidt A, Zámbóné-Doma Z (2003) Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502:157–168. doi:10.1023/B:HYDR.0000004278.10887.40

    Article  Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621:1–19. doi:10.1007/s10750-008-9645-0

    Article  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World J 1:76–113. doi:10.1100/tsw.2001.16

    CAS  Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reynolds CS, Petersen AC (2000) The distribution of planktonic cyanobacteria in Irish lakes in relation to their trophic states. Hydrobiologia 424:91–99. doi:10.1023/A:1003901012233

    Article  CAS  Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. doi:10.1093/plankt/24.5.417

    Article  Google Scholar 

  • Roozen FCJM, Van Geest GJ, Ibelings BW, Roijackers RMM, Scheffer M, Buijse AD (2003) Lake age and water level affect turbidity of floodplain lakes along the lower Rhine. Freshw Biol 48:519–531. doi:10.1046/j.1365-2427.2003.01026.x

    Article  Google Scholar 

  • Rott E (1981) Some results from phytoplankton counting intercalibration. Swiss J Hydrol 43:34–62. doi:10.1007/BF02502471

    Article  Google Scholar 

  • Salmaso N (2000) Factors affecting the seasonality and distribution of Cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda. Hydrobiologia 438:43–63. doi:10.1023/A:1004157828049

    Article  CAS  Google Scholar 

  • Schagerl M, Drozdowski I, Angeler DG, Hein T, Preiner S (2009) Water age–a major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria). J Limnol 68:274–287. doi:10.3274/JL09-68-2-11

    Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, New York

    Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656. doi:10.1016/j.tree.2003.09.002

    Article  Google Scholar 

  • Schelske CL, Carrick HJ, Aldridge FJ (1995) Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? J N Am Benthol Soc 14:616–630

    Article  Google Scholar 

  • Schwarz U (2005) Landschaftsökologische Charakterisierung des Kopački Rit unter besonderer Berücksichtigung von Flusslandschaftsformen sowie deren Genese und Typologie. Dissertation, University of Wien

  • Sommer U, Padisák J, Reynolds CS, Juhász-Nagy P (1993) Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249:1–7. doi:10.1007/BF00008837

    Article  Google Scholar 

  • Sournia A (1978) Phytoplankton manual. UNESCO, Paris

    Google Scholar 

  • Stević F, Mihaljević M, Horvatić J (2005) Interactions between microphytoplankton of the Danube, its sidearms and wetlands (1426–1388 r. km, Croatia). Period Biol 107:299–304

    Google Scholar 

  • Stoyneva MP (2003) Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502:169–176. doi:10.1023/B:HYDR.0000004279.59719.7e

    Article  Google Scholar 

  • Tavera R, Castillo S (2000) An eutrophication-induced shift in the composition, frequency and abundance of the phytoplankton in Lake Catemaco, Veracruz, México. In: Munawar M, Lawrence S, Munawar IF, Malley D (eds) Aquatic ecosystems of Mexico: status and scope. Ecovision World Monograph Series. Backhuys Publishers, The Netherlands, pp 103–117

    Google Scholar 

  • Ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows: software for canonical community ordination. Microcomputer Power, New York

    Google Scholar 

  • Tockner K, Pannetzdorfer D, Reiner N, Scheiner F, Ward JV (1999) Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshw Biol 41:521–535. doi:10.1046/j.1365-2427.1999.00399.x

    Article  Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883. doi:10.1002/1099-1085(200011/12)14:16/17<2861:AID-HYP124>3.0.CO;2-F

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Limnol 9:1–38

    Google Scholar 

  • Van Donk E, Gulati RD, Iedema A, Meulemans JT (1993) Macrophyte related shifts in the nitrogen and phosphorous contents of the different trophic levels in a biomanipulated shallow lakes. Hydrobiologia 251:19–26

    Article  Google Scholar 

  • Van Geest GJ, Coops H, Scheffer M, van Nes EH (2007) Long transient near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10:36–46. doi:10.1007/s10021-006-9000-0

    Article  Google Scholar 

  • Vidaković J, Bogut I (2007) Periphyton nematode assemblages in association with Myriophyllum spicatum L. in Lake Sakadaš, Croatia. Russ J Nematol 15:79–88

    Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrolog Sci J 54:101–123. doi:10.1623/hysj.54.1.101

    Article  Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484. doi:10.1007/s00442-007-0683-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank the anonymous reviewers for their constructive comments and helpful suggestions which substantially improved this manuscript. This project was supported by the Croatian Ministry of Science, Education, and Sports. The authors wish to express their gratitude to Dubravka Špoljarić and Vanda Cvijanović for help in the sampling process and laboratory investigation. Also, we would like to thank Branimir K. Hackenberger, PhD for help in the statistical analyses and Ms. Jadranka Zlomislić for careful reading of the manuscript and language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melita Mihaljević.

Additional information

Handling editor: Bas W. Ibelings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaljević, M., Stević, F. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquat Ecol 45, 335–349 (2011). https://doi.org/10.1007/s10452-011-9357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-011-9357-9

Keywords

Navigation