Skip to main content
Log in

Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Lake Baikal freezes for 4–5 months each year; yet the planktonic diatoms that grow under the ice include some of the largest species found in freshwater. An important factor influencing their growth is the depth of snow. In this study, a population of Aulacoseira baicalensis developed where there was little or no snow on the ice but declined where there was 10 cm of snow, because 99% of the available light was attenuated. Culture studies of light response showed that A. baicalensis was adapted to relatively low light intensities (<40 μmol m−2 s−1) that were close to the average that a cell experiences in L. Baikal when mixed vertically by convection to depths that can exceed 100 m. On sunny days, cell division could be inhibited down to >10 m depth but narrow (<15 μm) diameter cells trapped in high light intensities in sub-ice layers switched to auxosporulation and size regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bidoshvili YeD, Bondarenko NA, Sakirko MV, Khanayev IV, Likhoshway YeV (2007) The change in the length of colonies of the planktonic diatom Aulacoseira baicalensis in various stages of the annual cycle in Lake Baikal. Hydrobiol J 43:79–86

    Article  Google Scholar 

  • Bondarenko NA, Timoshkin OA, Ropstorf P, Melnik NG (2006) The under-ice and bottom periods in the life cycle of Aulacoseira baicalensis (K. Meter) Simonsen, a principal Lake Baikal alga. Hydrobiol J 568:107–109

    Article  Google Scholar 

  • Cronberg G, Gelin C, Larsson K (1975) Lake Trummmen restoration project. II. Bacteria, phytoplankton and phytoplankton productivity. Verh Int Ver Limnol 19:1088–1096

    Google Scholar 

  • Fietz S, Kobanova G, Izmest’eva L, Nicklisch A (2005) Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. J Plankton Res 27:793–810

    Article  CAS  Google Scholar 

  • Grachev MA, Vorobyova SS, Likhoshway YV, Goldberg EL, Ziborova GA, Levina OL, Khlystov OL (1998) A high-resolution diatom record of the palaeoclimates of East Siberia for the last 2.5 My from Lake Baikal. Quart Sc Rev 17:1101–1106

    Article  Google Scholar 

  • Granin NG, Jewson D, RYu Gnatovsky, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tsekhanovskii VV, Doroschenko LF, NYu Mogilev (1999) Turbulent mixing in the water layer just below the ice and its role in development of diatomic algae in Lake Baikal. Dokl Akad Nauk 366:835–839

    CAS  Google Scholar 

  • Granin NG, Jewson D, RYu Gnatovsky, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tsekhanovskii VV, Doroschenko LF, Minko NP, Grachev MA (2000) Turbulent mixing under ice and the growth of diatoms in Lake Baikal. Verh Int Ver Limnol 27:2812–2814

    Google Scholar 

  • Gutt J (1995) The occurrence of sub-ice algal aggregations off northeast Greenland. Polar Biol 15:247–252

    Article  Google Scholar 

  • Jewson D (1975) The relation of incident radiation to diurnal rates of photosynthesis in Lough Neagh. Int Rev ges Hydrobiol 60:759–767

    Article  CAS  Google Scholar 

  • Jewson DH, Wood RB (1975) Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh Int Ver Limnol 19:1037–1044

    Google Scholar 

  • Jewson DH, Granin NG, Zhdarnov AA, Gorbunova LA, Bondarenko NA, Gnatovsky RYu (2008) Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnol Oceanogr 53:1125–1136

    Google Scholar 

  • Jónasson P, Adalsteinsson H (1979) Phytoplankton production in the shallow eutrophic Lake Mývatn, Iceland. Oikos 32:113–138

    Article  Google Scholar 

  • Kelley DE (1997) Convection in ice covered lakes: effects of algal suspension. J Plankton Res 19:1859–1880

    Article  Google Scholar 

  • Kozhov M (1963) Lake Baikal and its life. Junk, The Hague

    Google Scholar 

  • Kozhova OM (1987) Phytoplankton of Lake Baikal: structural and functional characteristics. Arch Hydrobiol Beih Ergebn Limnol 25:19–37

    Google Scholar 

  • Kozhova OM, Izmest’eva LR (1998) Lake Baikal, Evolution and Biodiversity. Backhuys, Leiden, pp 1–23

    Google Scholar 

  • Likoshway YV (1999) Fossil endemic centric diatoms from Lake Baikal, Upper Pliestocene complexes. In: Mayama S, Idei M, Koizumi I (eds) 14th Diatom Symposium 1996. Koeltz, Koenigstein, pp 613–628

    Google Scholar 

  • Lund JWG (1966) Znachenie turbulentnosti vody v priodichnosti razvitiya nekotorykh presnovodnyh vidov roda Melosira (Algae). Bot Zh Kyyiv 51:176–187

    Google Scholar 

  • Mackay AW, Ryves DB, Battarbee RW, Flower RJ, Jewson DH, Rioual PMJ, Sturm M (2005) 1000 years of climate variability in Central Asia: assessing the evidence using Lake Baikal diatom assemblages and the application of a diatom-inferred model of snow thickness. Glob Planet Change 46:281–297

    Article  Google Scholar 

  • Nauwerck A (1963) Die Beziehungen zwischen zooplankton und phytoplankton in See Erken. Symb Bot Ups 17:1–163

    Google Scholar 

  • Popovskaya GI (2000) Ecological monitoring of phytoplankton in Lake Baikal. Aquat Ecosyst Health Manag 3:215–225

    Article  Google Scholar 

  • Richardson TL, Gibson CE, Heaney SI (2000) Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshw Biol 44:431–440

    Article  Google Scholar 

  • Rodhe W (1955) Can plankton production proceed during winter darkness in sub-arctic lakes? Verh Int Ver Limnol 12:117–122

    Google Scholar 

  • Sherstyankin PP (1975) Experimental studies of the underwater light field in Lake Baikal. Nauka, Moscow, pp 1–91 in Russian

    Google Scholar 

  • Shimaraev MN, Verbolov VI, Granin NG, Sherstyankin PP (1994) Physical Limnology of Lake Baikal: a Review. Print No. 2. Baikal International Center for Ecological Research, Irkutsk

    Google Scholar 

  • Skabichevsky AP (1929) On the biology of Melosira baicalensis (K. Meyer). Russ Hydrobiol J 8:93–114 in Russian

    Google Scholar 

  • Straškrabová V, Izmest’yeva LR, Maksimova EA, Fietz S, Nedoma J, Boroveca J, Kobanova GI, Shchetinina EV, Pisleginac EV (2005) Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Glob Planet Change 46:57–73

    Article  Google Scholar 

  • Zhdanov AA, Granin NG, Shimaraev MN (2001) The generation mechanisms of under-ice currents in Lake Baikal. Dokl Earth Sci A 377:329–332

    Google Scholar 

Download references

Acknowledgments

We thank the members of the Limnology Institute of the Russian Academy of Sciences, M. A. Grachev, Ye. Likhoshway, N. Bondarenko, N. Guselnikova, L. A. Gorbunova, M. N. Shimaraev, V. Tsekhanovsky, L. Olbolkina, V. A. Olbolkin, O. Molozhavaya, A. Kuzmina, N. Melnik, L. Granina and L. Doroschenko. We are also grateful for the help of C. E. Gibson, I. Heaney, M. Sturm, A. Mackay, R. Flower and R. W. Battarbee. We also thank the Royal Society and Russian Academy of Sciences Siberian Division, who have supported parts of this work. We thank K. Salonen and reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Jewson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jewson, D.H., Granin, N.G., Zhdanov, A.A. et al. Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquat Ecol 43, 673–679 (2009). https://doi.org/10.1007/s10452-009-9267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-009-9267-2

Keywords

Navigation