Skip to main content

Advertisement

Log in

A laboratory study on biochemical degradation and microbial utilization of organic matter comprising a marine diatom, land grass, and salt marsh plant in estuarine ecosystems

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We studied the biochemical degradation of organic matter comprising marine diatom, land grass, and salt marsh plant in estuarine ecosystems in two laboratory microcosms consisting of estuarine sediments and coastal seawater. The materials were incubated separately and together under controlled oxic and anoxic conditions to test effects of co-metabolism and redox on overall degradation of organic matter. We followed variations of bulk parameters [total organic carbon (TOC), total nitrogen (TN), C/N ratio, δ13CTOC, and δ15NTN], fatty acid concentrations, and compound-specific δ13C values over 3 months. Coexistence of marine diatom (relatively labile) with land grass/salt marsh plant (relatively refractory) in the microcosms yielded a negative co-metabolism effect (retardation rather than acceleration) on the overall degradation of organic matter. The ratios of oxic to anoxic degradation rate constants (k ox/k an) of TOC and most fatty acids were in a range of 1.1–1.7, implying that redox conditions per se had a limited influence on degradation of fresh organic materials in estuarine ecosystems. Variations of two bacteria-specific fatty acids (iso- and anteiso-15:0) and their δ13C values indicated that bacterial metabolism could use organic carbon (OC) from any available material when only one single-source material was dominant in the ecosystems. However, bacteria probably utilized OC preferentially from labile marine diatom when multiple-source materials were almost equally present in the ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aller RC (2004) Conceptual models of early diagenetic processes: the muddy seafloor as an unsteady, batch reactor. J Mar Res 62:815–835. doi:10.1357/0022240042880837

    Article  CAS  Google Scholar 

  • Aller JY, Aller RC (2004) Physical disturbance creates bacterial dominance of benthic biological communities in tropical deltaic environments of the Gulf of Papua. Cont Shelf Res 24:2395–2416. doi:10.1016/j.csr.2004.07.015

    Article  Google Scholar 

  • Aller RC, Mackin JE (1989) Open-incubation, diffusion methods for measuring solute reaction rates in sediments. J Mar Res 47:411–440. doi:10.1357/002224089785076262

    Article  CAS  Google Scholar 

  • Amelung W, Bol R, Friedrich C (1999) Natural 13C abundance: a tool to trace the incorporation of dung-derived carbon into soil particle-size fractions. Rapid Commun Mass Spectrom 13:1291–1294. doi:10.1002/(SICI)1097-0231(19990715)13:13<1291::AID-RCM637>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Stevenson FJ, Mulvaney RL (1994) The effect of ammonium fixation and displacement on the added nitrogen interaction in incubation experiments. Biol Fertil Soils 18:99–102. doi:10.1007/BF00336453

    Article  CAS  Google Scholar 

  • Benner R, Moran MA, Hodson RE (1986) Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of prokaryotes and eukaryotes. Limnol Oceanogr 31:89–100

    Article  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton

    Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105. doi:10.1016/j.apsoil.2007.05.002

    Article  Google Scholar 

  • Bol R, Moering J, Kuzyakov Y, Amelung W (2003) Quantification of priming and CO2 respiration sources following slurry-C incorporation into two grassland soils with different C content. Rapid Commun Mass Spectrom 17:2585–2590. doi:10.1002/rcm.1184

    Article  CAS  PubMed  Google Scholar 

  • Boschker HTS, de Brouwer JFC, Cappenberg TE (1999) The contribution of macrophyte derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44:309–319

    Google Scholar 

  • Boschker HTS, Kromkamp JC, Middelburg JJ (2005) Biomarker and carbon isotopic constraints on bacterial and algal community structure and functioning in a turbid, tidal estuary. Limnol Oceanogr 50:70–80

    CAS  Google Scholar 

  • Bossio DA, Fleck JA, Scow KM, Fujii R (2006) Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol Biochem 38:1223–1233. doi:10.1016/j.soilbio.2005.09.027

    Article  CAS  Google Scholar 

  • Bradshaw SA, Eglinton G (1993) Marine invertebrate feeding and the sedimentary lipid record. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 225–235

    Google Scholar 

  • Brassell SC (1993) Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 699–737

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114:315–329. doi:10.1016/0009-2541(94)90061-2

    Article  CAS  PubMed  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Org Geochem 20:563–577. doi:10.1016/0146-6380(93)90024-6

    Article  CAS  Google Scholar 

  • Canuel EA, Martens CS (1996) Reactivity of recently-deposited organic matter: degradation of lipid compounds near the sediment-water interface. Geochim Cosmochim Acta 60:1793–1806. doi:10.1016/0016-7037(96)00045-2

    Article  CAS  Google Scholar 

  • Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol Oceanogr 42:1570–1583

    CAS  Google Scholar 

  • Chamberlain PM, Black HIJ (2005) Fatty acid compositions of Collembola: unusually high proportions of C-20 polyunsaturated fatty acids in a terrestrial invertebrate. Comp Biochem Physiol B Biochem Mol Biol 140:299–307

    Article  PubMed  CAS  Google Scholar 

  • Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant Soil 183:263–268. doi:10.1007/BF00011441

    Article  CAS  Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    PubMed  Google Scholar 

  • Córdova-Kreylos AL, Cao Y, Green PG, Hwang H-M, Kuivila KM, LaMontagne MG et al (2006) Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments. Appl Environ Microbiol 72:3357–3366. doi:10.1128/AEM.72.5.3357-3366.2006

    Article  PubMed  CAS  Google Scholar 

  • Cowie GL, Hedges JI (1994) Biochemical indicators of diagenetic alteration in natural organic mixtures. Nature 369:304–307. doi:10.1038/369304a0

    Article  CAS  Google Scholar 

  • Cowie GL, Hedges JI, Prahl FG, de Lange GJ (1995) Elementary and major biochemical changes across an oxidation front in a relict turbidite: an oxygen effect. Geochim Cosmochim Acta 59:33–46. doi:10.1016/0016-7037(94)00329-K

    Article  CAS  Google Scholar 

  • Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments. Org Geochem 11:513–527. doi:10.1016/0146-6380(87)90007-6

    Article  CAS  Google Scholar 

  • Dai J, Sun M-Y (2007) Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods. Org Geochem 38:1–15. doi:10.1016/j.orggeochem.2006.10.002

    Article  CAS  Google Scholar 

  • Dai J, Sun M-Y, Culp RA, Noakes JE (2005) Changes in chemical and isotopic signatures of plant materials during degradation. Geophys Res Lett 32:L13608. doi:10.1029/2005GL023133

    Article  Google Scholar 

  • Danovaro R, Fabiano M, Boyer M (1994) Seasonal changes of benthic bacteria in a seagrass bed (Posidonia oceanica) of the Ligurian Sea in relation to origin, composition and fate of the sediment organic matter. Mar Biol (Berl) 119:489–500. doi:10.1007/BF00354310

    Article  Google Scholar 

  • Dauwe B, Middelburg JJ, Herman PMJ (2001) Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area. Mar Ecol Prog Ser 215:13–22. doi:10.3354/meps215013

    Article  CAS  Google Scholar 

  • de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 23–72

    Google Scholar 

  • Ding H, Sun M-Y (2005) Biochemical degradation of algal fatty acids in oxic and anoxic sediment–seawater interface systems: effects of structural association and relative roles of aerobic and anaerobic bacteria. Mar Chem 93:1–19. doi:10.1016/j.marchem.2004.04.004

    Article  CAS  Google Scholar 

  • Emerson S, Hedges JI (1988) Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3:621–634. doi:10.1029/PA003i005p00621

    Article  Google Scholar 

  • Fangueiro D, Chadwick D, Dixon L, Bol R (2007) Quantification of priming and CO2 emission sources following the application of different slurry particle size fractions to a grassland soil. Soil Biol Biochem 39:2608–2620. doi:10.1016/j.soilbio.2007.05.012

    Article  CAS  Google Scholar 

  • Farrington JW, Henrichs SM, Anderson R (1977) Fatty acids and Pb-210 geochronology of a sediment core from Buzzards Bay Massachusetts. Geochim Cosmochim Acta 41:289–296. doi:10.1016/0016-7037(77)90237-X

    Article  CAS  Google Scholar 

  • Gulz PG (1994) Epicuticular leaf waxes in the evolution of the plant kingdom. J Plant Physiol 143:453–464

    Google Scholar 

  • Haddad RI, Martens CS, Farrington JW (1992) Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Org Geochem 19:205–216. doi:10.1016/0146-6380(92)90037-X

    Article  CAS  Google Scholar 

  • Harvey HR, Macko SA (1997a) Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. Org Geochem 27:129–140. doi:10.1016/S0146-6380(97)00077-6

    Article  CAS  Google Scholar 

  • Harvey HR, Macko SA (1997b) Catalysts or contributors? Tracking bacterial mediation of early diagenesis in the marine water column. Org Geochem 27:531–544. doi:10.1016/S0146-6380(97)00033-8

    Article  Google Scholar 

  • Harvey HR, Tuttle JH, Bell JT (1995) Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59:3367–3377. doi:10.1016/0016-7037(95)00217-N

    Article  CAS  Google Scholar 

  • Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and role of anaerobic process in the oceanic carbon economy. Geomicrobiol J 5:191–237

    Article  CAS  Google Scholar 

  • Hoefs MJL, Rijpstra WIC, Sinninghe Damsté JS (2002) The influence of oxic degradation on the sedimentary biomarker record: I. Evidence from Madeira Abyssal plain turbidites. Geochim Cosmochim Acta 66:2719–2735. doi:10.1016/S0016-7037(02)00864-5

    Article  CAS  Google Scholar 

  • Hopkinson CS (1985) Shallow-water benthic and pelagic metabolism: evidence of heterotrophy in the nearshore Georgia Bight. Mar Biol (Berl) 87:19–32. doi:10.1007/BF00397002

    Article  Google Scholar 

  • Hopkinson CS, Vallino J (1995) The nature of watershed perturbations and their influence on estuarine metabolism. Estuaries 18:598–621. doi:10.2307/1352380

    Article  CAS  Google Scholar 

  • Hulthe G, Hulthe S, Hall POJ (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim Cosmochim Acta 62:1319–1328. doi:10.1016/S0016-7037(98)00044-1

    Article  CAS  Google Scholar 

  • Ittekkot V, Lanne R (1991) Fate of riverine particulate organic matter. In: Degens E, Kempe S, Richey R (eds) Biogeochemistry of major world rivers. Wiley, Chichester, pp 233–242

    Google Scholar 

  • Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    CAS  PubMed  Google Scholar 

  • Kristensen E, Holmer M (2001) Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3 , and SO4 2−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochim Cosmochim Acta 65:419–433. doi:10.1016/S0016-7037(00)00532-9

    Article  CAS  Google Scholar 

  • Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediments: which is faster? Limnol Oceanogr 40:1430–1437

    CAS  Google Scholar 

  • Kuzyakov Y, Bol R (2006) Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biol Biochem 38:747–758. doi:10.1016/j.soilbio.2005.06.025

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi:10.1016/S0038-0717(00)00084-5

    Article  CAS  Google Scholar 

  • Lavelle P, Gilot C (1994) Priming effect of macroorganisms on microflora: a key process of soil function? In: Ritz KJ, Dighton J, Giller KE (eds) Beyond the biomass: compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 173–180

    Google Scholar 

  • Lee C (1992) Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. Geochim Cosmochim Acta 56:3323–3335. doi:10.1016/0016-7037(92)90308-6

    Article  CAS  Google Scholar 

  • Löhnis F (1926) Nitrogen availability of green manures. Soil Sci 42:253–290

    Article  Google Scholar 

  • Maccubbin AE, Hodson RE (1980) Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl Environ Microbiol 48:735–740

    Google Scholar 

  • Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W et al (1999) 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol 1:409–414. doi:10.1046/j.1462-2920.1999.00050.x

    Article  CAS  PubMed  Google Scholar 

  • Mulholland PJ, Olsen CR (1992) Marine origin of Savannah River estuary sediments: evidence from radioactive and stable isotope tracers. Estuar Coast Shelf Sci 34:95–107. doi:10.1016/S0272-7714(05)80129-5

    Article  CAS  Google Scholar 

  • Parkes RJ, Taylor J (1983) The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuar Coast Shelf Sci 16:173–189. doi:10.1016/0272-7714(83)90139-7

    Article  CAS  Google Scholar 

  • Pederson TF, Calvert SE (1990) Anoxia vs. productivity—what controls the formation of organic-carbon-rich sediment and sedimentary-rocks? Am Assoc Pet Geol Bull 74:454–466

    Google Scholar 

  • Schweizer M, Fear J, Cadisch G (1999) Isotopic (13C) fractination during plant residue decomposition and its implications for soil organic matter studies. Rapid Commun Mass Spectrom 13:1284–1290. doi:10.1002/(SICI)1097-0231(19990715)13:13<1284::AID-RCM578>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Hollibaugh JT (1995) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89. doi:10.1029/92RG02584

    Article  Google Scholar 

  • Sparling GS, Cheshire MV, Mundie CM (1982) Effect of barley plants on the decomposition of 14C-labelled soil organic matter. J Soil Sci 33:89–100. doi:10.1111/j.1365-2389.1982.tb01750.x

    Article  Google Scholar 

  • Sun M-Y, Lee C, Aller RC (1993) Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochim Cosmochim Acta 57:147–157. doi:10.1016/0016-7037(93)90475-C

    Article  CAS  Google Scholar 

  • Sun M-Y, Wakeham SG, Lee C (1997) Rates and mechanisms of fatty acids degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. Geochim Cosmochim Acta 61:341–355. doi:10.1016/S0016-7037(96)00315-8

    Article  CAS  Google Scholar 

  • Sun M-Y, Cai W-J, Joye SB, Ding H, Dai J, Hollibaugh JT (2002) Degradation of algal lipids in microcosm sediments with different mixing regimes. Org Geochem 33:445–459. doi:10.1016/S0146-6380(02)00005-0

    Article  CAS  Google Scholar 

  • Sun M-Y, Zou L, Dai J, Ding H, Culp RA, Scranton MI (2004) Molecular carbon isotopic fractionation of algal lipids during decomposition in natural oxic and anoxic seawaters. Org Geochem 35:895–908. doi:10.1016/j.orggeochem.2004.04.001

    Article  CAS  Google Scholar 

  • Teece MA, Getliff JM, Leftley JW, Parks RJ, Maxwell JR (1998) Microbial degradation of the marine prymnesiophyte Emiliania huxleyi under oxic and anoxic conditions as a model for early diagenesis: long chain alkadienes, alkenones and alkyl alkenoates. Org Geochem 29:863–880. doi:10.1016/S0146-6380(98)00145-4

    Article  CAS  Google Scholar 

  • Teece MA, Fogel ML, Dollhopf ME, Nealson KH (1999) Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org Geochem 30:1571–1579. doi:10.1016/S0146-6380(99)00108-4

    Article  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240. doi:10.1016/0022-0981(89)90029-4

    Article  CAS  Google Scholar 

  • Wakeham SG, Canuel EA (2006) Degradation and preservation of organic matter in marine sediments. In: Volkman JK (ed) The handbook of environmental chemistry, vol 2: reactions and processes: bio and chemical markers in environmental chemistry. Springer, Berlin, pp 295–321

    Google Scholar 

  • Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML (1997) Molecular indicators of diagenetic status. Geochim Cosmochim Acta 61:5363–5369. doi:10.1016/S0016-7037(97)00312-8

    Article  CAS  Google Scholar 

  • Wang JG, Bakken LR (1997) Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability. Soil Biol Biochem 29:163–170. doi:10.1016/S0038-0717(96)00292-1

    Article  Google Scholar 

  • Wilson JO (1985) Decomposition of [14C] lignocelluloses of Spartina alterniflora and a comparison with field experiments. Appl Environ Microbiol 49:478–484

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank T. Maddox who helps us with bulk parameter measurements. We are also grateful to the UGA Marine Institute at Sapelo Island for providing logistical support for sampling. This research was supported by U.S. National Science Foundation (grants OCE-0116786 and OCE-0526111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, J., Sun, MY., Culp, R.A. et al. A laboratory study on biochemical degradation and microbial utilization of organic matter comprising a marine diatom, land grass, and salt marsh plant in estuarine ecosystems. Aquat Ecol 43, 825–841 (2009). https://doi.org/10.1007/s10452-008-9211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-008-9211-x

Keywords

Navigation