Skip to main content
Log in

Phototactic response and light sensitivity in an epigean and a hypogean population of a barb (Garra barreimiae, Cyprinidae)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

We investigated the response of two populations of the barb Garra barreimiae to different light intensities (0.5–2000 lx) from a light source. Adults of both the surface (epigean) and cave (hypogean) G. barreimiae populations show photophobic behavior. A photophobic response in the cave form was seen only at higher light intensities because the cavefish are eyeless and rely on extra-retinal light receptors to detect light. In contrast, juveniles (surface and cave) showed photophilic behavior, and their preference for the photic zone of the test tank decreased with increasing age. We discuss the potential role played by photophobic behavior for the colonization of caves by previously surface-dwelling fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banister KE (1984) A subterranean population of Garra barreimiae (Teleostei: Cyprinidae) from Oman, with comments on the concept of regressive evolution. J Nat Hist 18:927–938

    Article  Google Scholar 

  • Banister KE (1987) Two new species of Garra (Teleostei-Cyprinidae) from the Arabian peninsula. Bull Br Mus Nat Hist (Zool) 52:59–70

    Google Scholar 

  • Banister KE (1992) Blind cave fishes. Aqua Geogr 2:65–73

    Google Scholar 

  • Barr TC (1968) Cave ecology and the evolution of troglobites. Evol Biol 2:35–102

    Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Breder CM, Rasquin P (1947) Comparative studies on the light sensitivity of blind characins from a series of Mexican caves. Bull Am Mus Nat Hist 89:325–351

    Google Scholar 

  • Büttiker W, Krupp F (1989) Fauna eines Sandmeeres—Zoologische Untersuchung in der Wahiba–Wüste, Oman. Natur Mus 119:241–261

    Google Scholar 

  • Camassa MM (2001) Responses to light in epigean and hypogean populations of Gambusia affinis (Cyprinodontiformes: Poeciliidae). Environ Biol Fish 62:115–118

    Article  Google Scholar 

  • Ercolini A, Berti R (1975) Light sensitivity experiments and morphology studies of the blind phreatic fish Phreatichthys andruzzii Vinciguerra from Somalia. Monit Zool Ital 6:29–43

    Google Scholar 

  • Ercolini A, Berti R (1978) Morphology and response to light of Barbopsis devecchii Caporiacco (Cyprinidae), microphthalmic phreatic fish from Somalia. Monit Zool Ital 10:299–314

    Google Scholar 

  • Feulner G (1998) Wadi fish of the UAE. Tribulus 8:16–22

    Google Scholar 

  • Fowler HW, Steinitz H (1956) Fishes from Cyprus, Iran, Iraq, Israel and Oman. Bull Res Counc Isr 5B:260–292

    Google Scholar 

  • Gertychowa R (1970) Studies on the ethology and space orientation of the blind cavefish Anoptichthys jordani Hubbs and Innes 1936 (Characidae). Fol Biol 18:9–69

    CAS  Google Scholar 

  • Hafeez MA, Quay WB (1970) The role of the pineal organ in the control of phototaxis and body coloration in rainbow trout (Salmo gairdneri, Richardson). J Comp Physiol A 68:403–416

    Google Scholar 

  • Hüppop K (1986) Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations. Environ Biol Fish 17:299–308

    Article  Google Scholar 

  • Hüppop K (1988) Phänomene und Bedeutung der Energieersparnis beim Höhlensalmler Astyanax fasciatus. PhD thesis. University of Hamburg, Hamburg

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Jeffery WR (2001) Cavefish as a model system in evolutionary and developmental biology. Dev Biol 231:1–12

    Article  PubMed  CAS  Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196

    Article  PubMed  CAS  Google Scholar 

  • Kane TC, Richardson RC (1985) Regressive evolution: a historical perspective. Nat Speleol Soc Bull 47:71–77

    Google Scholar 

  • Kosswig C (1960) Zur Phylogenese sogenannter Anpassungsmerkmale bei Höhlentieren. Int Rev Ges Hydrobiol 45:493–512

    Google Scholar 

  • Krupp F, Schneider W (1988) Die Süßwasserfauna des Vorderen Orients. Anpassungsstrategien und Besiedlungsgeschichte einer zoogeographischen Übergangszone. Nat Mus 118:193–212

    Google Scholar 

  • Langecker TG (1989) Studies on the light reaction of epigean and cave populations of Astyanax fasciatus (Characidae, Pisces). Mem Biospeol 16:169–176

    Google Scholar 

  • Langecker TG (1990) Der Einfluss des Lichts bei der Evolution von Höhlenfischen. PhD thesis. University of Hamburg, Hamburg

  • Langecker TG (1992) Light sensitivity of cave vertebrates—behavioral and morphological aspects. In: Camachio AI (ed) The natural history of Biospeleology. Monografias del Museo Nacional de Ciencias Naturales, Madrid, pp 295–326

    Google Scholar 

  • Ludwig W (1942) Zur evolutorischen Erklärung der Höhlentiermerkmale durch Allelelimination. Biol Zentralbl 62:447–482

    Google Scholar 

  • Lüling KH (1954) Untersuchungen am Blindfisch Anoptichthys jordani Hubbs & Innes (Characidae). II. Beobachtungen und Experimente an Anoptichthys jordani zur Prüfung der Einstellung zum Futter, zum Licht und zur Wasserturbulenz. Zool Jahrb Abt Zool Physiol 65:9–42

    Google Scholar 

  • McCauley DW, Hixon E, Jeffery WR (2004) Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evol Dev 6:209–218

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RW, Russell WH, Elliott WR (1977) Mexican eyeless characin fishes, genus Astyanax: Environment, distribution and evolution. Spec Publ Mus Tex Tech Univ 12:1–89

    Google Scholar 

  • Parzefall J (1993) Behavioural ecology of cave-dwelling fishes. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman & Hall, London, pp 573–608

    Google Scholar 

  • Parzefall J, Kraus C, Tobler M, Plath M (2007) Photophilic behaviour in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae). J Fish Biol 71:1225–1231

    Article  Google Scholar 

  • Pati AK (2007) Circadian rhythms in hypogean fishes with special reference to the cave loach, Nemacheilus evezardi. In: Sébert P, Onyango DW, Kapoor BG (eds) Fish life in special environments. Science Publishers, Enfield, pp 83–130

    Google Scholar 

  • Pati AK, Agrawal A (2002) Studies on the behavioural ecology and physiology of a hypogean loach, Nemacheilus evezardi, from the Kotsumsar Cave, India. Curr Sci 83:1112–1116

    Google Scholar 

  • Plath M, Hauswaldt JS, Moll K, Tobler M, García de León FJ, Schlupp I, Tiedemann R (2007a) Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, from a Mexican cave with toxic hydrogen sulfide. Mol Ecol 16:967–976

    Article  PubMed  CAS  Google Scholar 

  • Plath M, Tobler M, Riesch R, García de León FJ, Giere O, Schlupp I (2007b) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996

    Article  PubMed  CAS  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290

    Article  Google Scholar 

  • Poulson TL (1964) Animals in aquatic environments: animals in caves. In: Bill DB (ed) Handbook of physiology, section 4: adaptation to the environment. Williams & Wilkins, Baltimore, pp 749–771

    Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subterranean ecosystems. In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 231–249

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 165:971–981

    Article  PubMed  Google Scholar 

  • Pradhan RK, Pati AK, Agarwal SM (1989) Meal scheduling modulation of circadian rhythm of phototactic behaviour in cave dwelling fish. Chronobiol Int 6:245–249

    Article  PubMed  CAS  Google Scholar 

  • Proudlove GS (2006) Subterranean fishes of the world. International Society for Subterranean Biology, Moulis

    Google Scholar 

  • Romero A (1985) Ontogenetic change in phototactic responses of surface and cave populations of Astyanax fasciatus (Pisces: Characidae). Copeia 1985:1004–1011

    Article  Google Scholar 

  • Romero A, Green SM (2005) The end of regressive evolution: examining and interpreting the evidence from cavefishes. J Fish Biol 67:3–32

    Article  Google Scholar 

  • Steven DM (1963) The dermal light sense. Biol Rev 38:204–240

    Article  PubMed  CAS  Google Scholar 

  • Strecker U, Bernatchez L, Wilkens H (2003) Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Mol Ecol 12:699–710

    Article  PubMed  CAS  Google Scholar 

  • Tabata M, Minh-Nyo M, Oguri M (1989) Thresholds of retinal and extraretinal photoreceptors measured by photobehavioral response in catfish, Silurus asotus. J Comp Physiol A 164:797–803

    Article  Google Scholar 

  • Thinès G (1954) Etude comparative de la photosensibilité des poissons aveugles Caecobarbus geertsii Boulenger et Anoptichthys jordani Hubbs and Innes. Ann Soc R Zool Belg 85:35–58

    Google Scholar 

  • Thinès G (1958) Beobachtungen über die Phototaxis und die Thermotaxis des blinden Höhlenfisches Caecobarbus geertsii (Cyprinidae). Experientia 14:381

    Article  PubMed  Google Scholar 

  • Thinès G, Kähling J (1957) Beobachtungen über die Farbempfindlichkeit des Höhlenfisches Anoptichthys jordani Hubbs and Innes (Characidae). Z Biol 109:150–160

    PubMed  Google Scholar 

  • Timmermann M, Schlupp I, Plath M (2004) Shoaling behaviour in a surface- and a cave-dwelling population of a barb, Garra barreimiae (Cyprinidae, Teleostei). Acta Ethol 7:59–64

    Article  Google Scholar 

  • Tobler M, Schlupp I, Heubel KU, Riesch R, García de León FJ, Giere O, Plath M (2006) Life on the edge: Hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585

    Article  PubMed  CAS  Google Scholar 

  • Tobler M, Schlupp I, García de León FJ, Glaubrecht M, Plath M (2007) Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish. Acta Oecol 31:270–275

    Article  Google Scholar 

  • Underwood H, Groos G (1982) Vertebrate circadian rhythms: retinal and extraretinal photoreception. Experientia 38:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Vawter AT, Fong DW, Culver DC (1987) Negative phototaxis in surface and cave populations of the amphipod Gammarus minus. Stygologia 3:83–88

    Google Scholar 

  • Waltham A, Brown RD, Middleton TC (1985) Karst and caves in the Jabal Akhdar, Oman. Cave Sci 12:69–79

    Google Scholar 

  • Weber A, Proudlove GS, Parzefall J, Wilkens H, Nalbant TT (1998) Morphology, systematic diversity, distribution and ecology of stygobitic fishes. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, vol 2. Société de Biospéologie, Moulis, Bucarest, pp 835–1373

    Google Scholar 

  • Weissenbacher A, Sattmann H, Christ M, Scattolin G, Ahnelt H (2002) Auf der Spur der blinden Höhlenfische. Aquaristik-Fachmagazin 34:66–72

    Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Evol Biol 23:271–367

    Google Scholar 

  • Wilkens H (2001) Convergent adaptations to cave life in the Rhamdia laticauda catfish group (Pimelodidae, Teleostei). Environ Biol Fish 62:251–261

    Article  Google Scholar 

  • Wilkens H, Strecker U (2003) Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye-size and pigmentation. Biol J Linn Soc 80:545–554

    Article  Google Scholar 

  • Yoshizawa M, Jeffery WR (2008) Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye. J Exp Biol 211:292–299

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Wilkens for access to his fish stocks and J. Parzefall for valuable discussions. G.S. Proudlove (Manchester, UK) and C. Franssen (College Station, TX, USA) kindly read and commented on a previous manuscript draft. Financial support came from the DFG to M.P. (PL 470/1-1, 470/1-2). We thank A. Taebel-Hellwig and the aquarium team in Hamburg for help with animal care. The experiments presented in this paper comply with the current laws in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Plath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmermann, M., Plath, M. Phototactic response and light sensitivity in an epigean and a hypogean population of a barb (Garra barreimiae, Cyprinidae). Aquat Ecol 43, 539–547 (2009). https://doi.org/10.1007/s10452-008-9173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-008-9173-z

Keywords

Navigation