Skip to main content
Log in

Shoaling behaviour in a surface-dwelling and a cave-dwelling population of a barb Garra barreimiae (Cyprinidae, Teleostei)

  • Original Article
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

We studied shoaling behaviour in a species of fish (Garra barreimiae) from Oman. We compared two populations (a surface-dwelling and a cave-dwelling population) with different theoretical costs and benefits of shoaling. We measured the tendency to associate with a shoal of conspecifics. The stimulus shoal was confined to (1) clear Plexiglas cylinders in light, (2) wire-mesh cylinders in light, or (3) wire-mesh cylinders in darkness. The surface form exhibited a strong preference for the stimulus shoal during the experiments in light, but also in darkness, when only non-visual cues from the shoal could be perceived. The cave form did not show a preference when solely visual cues were available (Plexiglas cylinder). When non-visual cues from the shoal could be perceived (wire-mesh), the cave form did show a preference to associate with the shoal, but the shoaling tendency was considerably weaker than in the surface form. The shoaling tendency has probably been genetically reduced in the cave form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ashley AJ, Kats LB, Wolfe JW (1993) Balancing trade-offs between risk and changing shoal size in northern red-belly dace (Phoxinus eos). Copeia 1993:540–542

    Google Scholar 

  • Banister KE (1984) A subterranean population of Garra barreimiae (Teleostei: Cyprinidae) from Oman, with comments on the concept of regressive evolution. J Nat Hist 18:927–938

    Google Scholar 

  • Banister KE (1987) Two new species of Garra (Teleostei–Cyprinidae) from the Arabian peninsula. Bull Br Mus Nat Hist Zool 52:59–70

    Google Scholar 

  • Barber I, Wright HA (2001) How strong are familiarity preferences in shoaling fish? Anim Behav 61:975–979

    Article  Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave faunas. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Berti R, Vezzosi R, Ercolini A (1989) Locomotory response of Phreatichthys andruzzii Vinciguerra (Pisces, Cyprinidae) to chemical signals of conspecifics and of closely related species. Experientia 45:205–207

    Google Scholar 

  • Brock VE, Riffenburgh RH (1960) Fish schooling: a possible factor in reducing predation. J Conseil 25:307–317

    Google Scholar 

  • Brown C, Laland KN (2003) Social learning in fishes: a review. Fish Fisheries 4:280–288

    Article  Google Scholar 

  • Büttiker W, Krupp F (1989) Fauna eines Sandmeeres—Zoologische Untersuchung in der Wahiba—Wüste, Oman. Nat Mus 119:241–261

    Google Scholar 

  • Chapman MR, Kramer DL (1996) Guarded resources: the effect of intruder number on the tactics and success of defenders and intruders. Anim Behav 52:83–94

    Article  Google Scholar 

  • Chivers DP, Brown GE, Smith RJF (1995) Familiarity and shoal composition in fathead minnows (Pimephales promelas): implications for antipredator behaviour. Can J Zool 73:955–960

    Google Scholar 

  • Feulner G (1998) Wadi fish of the UAE. Tribulus 8(2):16–22

    Google Scholar 

  • Foster SA (1985) Group foraging by a coral reef fish: a mechanism for gaining access to defended resources. Anim Behav 33:779–782

    Google Scholar 

  • Fowler HW, Steinitz H (1956) Fishes from Cyprus, Iran, Iraq, Israel and Oman. Bull Res Counc Isr 5B:260–292

    Google Scholar 

  • Godin JGJ (1986) Antipredator function of shoaling in teleost fishes: a selective review. Naturaliste Can 113:241–250

    Google Scholar 

  • Hager MC, Helfman GS (1991) Safety in numbers—shoal choice by minnows under predatory threat. Behav Ecol Sociobiol 29:271–276

    Article  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Gorner P, Munz H (eds) The mechanosensory lateral line neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 217–228

    Google Scholar 

  • van Havre N, FitzGerald GJ (1988) Shoaling and kin recognition in the threespine stickleback (Gasterosteus aculeatus L.). Biol Behav 13:190–201

    Google Scholar 

  • Hüppop K (1986) Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations. Environ Biol Fish 17:299–308

    Google Scholar 

  • Hüppop K (1988) Phänomene und Bedeutung der Energieersparnis beim Höhlensalmler Astyanax fasciatus. PhD thesis, University of Hamburg

  • Hüppop K (2000) How do cave animals cope with the food scarcity in caves? In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Jankowska M, Thinès G (1982) Étude comparative de la densité de groupes de poissons cavernicoles et épigés (Characidae, Cyprinidae, Clariidae). Behav Process 7:289–294

    Google Scholar 

  • Keenleyside MHA (1979) Diversity and adaptation in fish behaviour. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Krause J (1993) The influence of hunger on shoal size choice by three-spined sticklebacks, Gasterosteus aculeatus. J Fish Biol 43:775–780

    Article  Google Scholar 

  • Krause J (1994) The influence of food competition and predation risk on size-assortative shoaling in juvenile chub (Leuciscus cephalus). Ethology 96:105–116

    Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Hartmann N, Pritchard VL (1999) The influence of nutritional state on shoal choice in zebrafish, Danio rerio. Anim Behav 57:771–775

    Article  PubMed  Google Scholar 

  • Krupp F, Schneider W (1988) Die Süβwasserfauna des Vorderen Orients. Anpassungsstrategien und Besiedlungsgeschichte einer zoogeographischen Übergangszone. Nat Mus 118(7):193–212

    Google Scholar 

  • Langecker TG (2000) The effects of continuous darkness on cave ecology and cavernicolous evolution. In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 135–157

    Google Scholar 

  • Magurran AE (1990) The adaptive significance of schooling as an antipredator defence in fish. Ann Zool Fenn 27:51–66

    Google Scholar 

  • Magurran AE, Pitcher TJ (1987) Provenance, shoal size and the sociobiology of predator evasion behaviour in minnow shoals. Proc R Soc Lond B 229:439–445

    Google Scholar 

  • Magurran AE, Seghers BH (1991) Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118:214–234

    Google Scholar 

  • Magurran AE, Oulton W, Pitcher TJ (1985) Vigilant behaviour and shoal size in minnows. Z Tierpsychol 67:167–178

    Google Scholar 

  • Magurran AE, Seghers BH, Carvalho GR, Shaw PW (1992) Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of antipredator behaviour in the wild. Proc R Soc Lond B 248:260–277

    Google Scholar 

  • Magurran AE, Seghers BH, Carvalho GR, Shaw PW (1993) Evolution of adaptive variation in antipredator behaviour. In: Huntingford FA, Torricelli P (eds) Behavioural ecology of fishes. Harwood Academic, Amsterdam, pp 29–44

    Google Scholar 

  • Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environ Biol Fish 62:87–96

    Article  Google Scholar 

  • Neill SR, Cullen JM (1973) Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. J Zool Lond 172:549–569

    Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis for fish schools: relative roles of lateral line and vision. J Comp Physiol A 135:315–325

    Google Scholar 

  • Parzefall J (1970) Morphologische Untersuchungen an einer Höhlenform von Mollienesia sphenops (Pisces, Poeciliidae). Z Morph Tiere 68:323–342

    Article  Google Scholar 

  • Parzefall J (1993a) Behavioural ecology of cave-dwelling fishes. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman and Hall, London, pp 573–608

    Google Scholar 

  • Parzefall J (1993b) Schooling behaviour in population-hybrids of Astyanax fasciatus and Poecilia mexicana (Pisces, Characidae and Poeciliidae). In: Schröder H, Bauer J, Schartl M (eds) Trends in ichthyology. Blackwell Science, Oxford, pp 297–303

    Google Scholar 

  • Pitcher TJ, Parrish JK (1993) Functions of shoaling behaviour in teleosts. In: Pitcher TJ (ed) Behaviour of teleost fishes, 2nd edn. Chapman and Hall, London, pp 363–437

    Google Scholar 

  • Pitcher TJ, Maggurran AE, Winfield I (1982) Fish in larger shoals find food faster. Behav Ecol Sociobiol 10:149–151

    Article  Google Scholar 

  • Plath M, Parzefall J, Schlupp I (2003a) The role of sexual harassment in cave and surface-dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309

    Article  Google Scholar 

  • Plath M, Wiedemann K, Parzefall J, Schlupp I (2003b) Sex recognition in surface and cave-dwelling male Atlantic mollies Poecilia mexicana (Poeciliidae, Teleostei). Behaviour 140:765–782

    Article  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70:257–290

    Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subterranean ecosystems. In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 231–249

    Google Scholar 

  • Poulson TL, White WB (1969) The cave environment. Science 165:971–981

    Google Scholar 

  • Pulliam HR, Caraco T (1984) Living in groups: is there an optimal group size?. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Scientific, Oxford, pp 122–147

    Google Scholar 

  • Ranta E, Rita H, Lindström K (1993) Competition versus cooperation: success of individuals foraging alone and in groups. Am Nat 142:42–58

    Article  Google Scholar 

  • Reebs SG, Saulnier N (1997) The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas). Ethology 103:642–652

    Google Scholar 

  • Seghers BH (1974) Schooling behaviour in the guppy Poecilia reticulata: an evolutionary response to predation. Evolution 28:486–489

    Google Scholar 

  • Thinès G, Durand J-P (1973) Connaissances actuelles sur l’appareil sensoriel de la ligne latérale chez des vertébrés cavernicoles aquatiques. Ann Spéléol 28:271–282

    Google Scholar 

  • Walters LH, Walters VW (1965) Laboratory observations on a cavernicolous poeciliid from Tabasco, Mexico. Copeia 1965:214–233

    Google Scholar 

  • Weber A (2000) Fish and amphibia. In: Wilkens H, Culver DC, Humphries WF (eds) Ecosystems of the world 30: subterranean ecosystems. Elsevier, Amsterdam, pp 109–132

    Google Scholar 

  • Weber A, Proudlove GS, Parzefall J, Wilkens H, Nalbant TT (1998) Morphology, systematic diversity, distribution and ecology of stygobitic fishes. In: Juberthie C, Decu V (eds) Encyclopaedia Biospeologica, Tome II. Société de Biospéologie, Moulis-Bucarest, pp 835–1373

    Google Scholar 

  • Weissenbacher A, Sattmann H, Christ M, Scattolin G, Ahnelt H (2002) Auf der Spur der blinden Höhlenfische. Aquaristik-Fachmagazin 34:66–72

    Google Scholar 

  • Wilkens H (1988) Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). Support for the neutral mutation theory. Evol Biol 23:271–367

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank H. Wilkens for access to his fish stocks. A. Weber and J. Parzefall kindly read an earlier version of this article. Two anonymous reviewers provided valuable comments. We thank T.H. Dirks, I.D. Schmidt, A. Taebel-Hellwig, and the aquarium team in Hamburg for technical assistance and animal care. The experiments presented in this article comply with the current laws in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Plath.

Additional information

Communicated by R.F. Oliveira

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmermann, M., Schlupp, I. & Plath, M. Shoaling behaviour in a surface-dwelling and a cave-dwelling population of a barb Garra barreimiae (Cyprinidae, Teleostei). acta ethol 7, 59–64 (2004). https://doi.org/10.1007/s10211-004-0099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-004-0099-8

Keywords

Navigation