Skip to main content
Log in

Adsorption characteristics and thermodynamic property fields of methane and Sichuan Basin shales

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption of methane on three Sichuan Basin shales at 318 K, 338 K, and 358 K has been investigated experimentally. The adsorption equilibrium isotherm data were fitted with Langmuir, DR and DA model. A thermodynamic model on heat of adsorption (Qst), considering the non-ideality of gas and the adsorbed phase specific volume, was developed for adsorption fields of methane and shales. The other thermodynamic properties, included specific heat capacity of adsorbed phase (cp,a), entropy (sa) and enthalpy (ha) of adsorbed phase, were also evaluated on basis of the developed heat of adsorption model. The calculated isosteric heat of adsorption shows a temperature independent feature at lower surface loading while a negative temperature dependence at higher surface loading. Specific heat capacity of adsorbed phase (cpa) values increases with temperature, pressure and adsorption amount. The change of cpa value with temperature are higher at lower pressure and adsorption amount. The entropy and enthalpy of adsorbed phase decreases with the increase of methane adsorption, and the entropy change is larger at lower temperature suggesting lower temperature is conducive to formed ordered arrangement of CH4 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

q:

adsorption amount /mmol·g-1

q0 :

limiting adsorption amount /mmol·g-1

P:

the equilibrium pressure /MPa

Psat :

saturated vapor pressure /MPa

qe :

adsorbate surface loading /mg

n:

fitting factor

va :

the adsorbed phase specific volume /cm3·g-1

vb :

specific volume of adsorbate at the boiling point /cm3·g-1

α:

thermal expansion expression /K-1

E:

the characteristics energy /J·mol-1

qL :

Langmuir saturated adsorption amount /mmol·g-1

b0 :

Langmuir equilibrium constant /MPa-1

R:

the ideal gas constant /J·mol-1

T:

temperature /K-1

Pc :

critical pressure /MPa

Tc :

critical temperature /K

ΔHv :

enthalpy of vaporization at standard boiling point /cal·g-1·mol-1

va :

the adsorbed phase specific volume /cm3·g-1

vv :

the gas phase specific volume /cm3·g-1

Cp,a :

adsorbed phase specific heat capacity /kJ·kg-1K-1

Cp,g :

gaseous phase specific heat capacity /kJ·kg-1·K-1

ha :

adsorbed phase entropy /kJ·kg-1

sa :

adsorbed phase entropy /kJ·kg-1·K-1

a:

adsorbed phase

g:

gaseous phase

b:

boiling point

0:

maximum or reference

c:

critical

sat:

saturation

References

  1. Agarwal, R.K., Amankwah, K.A.G., Schwarz, J.A.: Analysis of adsorption entropies of high pressure gas adsorption data on activated carbon. Carbon 28, 169–174 (1990)

    Article  CAS  Google Scholar 

  2. Chen, F., Lu, S., Ding, X., He, X., Xing, H.: Evaluation of the adsorbed gas amount in a shale reservoir using the Three Compositions Adsorbing Methane (TCAM) method: a case from the Longmaxi Shale in Southeast Chongqing China. Energy Fuels 31, 11523–11531 (2017)

    Article  CAS  Google Scholar 

  3. Chen, L., Zuo, L., Jiang, Z., Jiang, S., Liu, K., Tan, J., Zhang, L.: Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale. Chem. Eng. J. 361, 559–570 (2019)

    Article  CAS  Google Scholar 

  4. Chen, Z.M., Yong, Z.Q., Zhu, J.P., Ye, X.M., Wang, H., Zhao, S.: Features of wufeng formation and longmaxi formation shale in nanchuan, Southeast of Sichuan. China. J. Chengdu Univ. Technol. 40, 696–702 (2013)

    CAS  Google Scholar 

  5. Chua, H.T., Ng, K.C., Chakraborty, A., Oo, N.M.: Thermodynamic property fields of an adsorbate-adsorbent system. Langmuir 19, 2254–2259 (2003)

    Article  CAS  Google Scholar 

  6. Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Wu, N., Chen, Q., Wei, X., Wang, R.: Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chem Eng J 383, 123191 (2020)

    Article  CAS  Google Scholar 

  7. Do, D.D., Do, H.D.: Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density. Carbon 41, 1777–1791 (2003)

    Article  CAS  Google Scholar 

  8. Du, X.D., Gu, M., Duan, S., Xian, X.F.: Investigation of CO2-CH4 displacement and transport in shale for enhanced shale gas recovery and CO2 sequestration”. ASME J. Energy Resour. Technol. 139, 012909 (2017)

    Article  Google Scholar 

  9. Duan, S., Gu, M., Du, X.D., Xian, X.F.: Adsorption equilibrium of CO2 and CH4 and their mixture on sichuan basin shale. Energy Fuels 30, 2248–2256 (2016)

    Article  CAS  Google Scholar 

  10. Duan, S., Gu, M., Tao, M.M., Xian, X.F.: Adsorption of methane on shale statistical physics model and site energy distribution studies. Energy Fuels 34, 304–318 (2020)

    Article  CAS  Google Scholar 

  11. Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960)

    Article  CAS  Google Scholar 

  12. Duong, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  13. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  14. Gu, M., Xian, X.F., Duan, S., Du, X.D.: Influences of the composition and pore structure of a shale on its selective adsorption of CO2 over CH4. J Nat Gas Sci. Eng. 46, 296–306 (2017)

    Article  CAS  Google Scholar 

  15. Guo, S.: Experimental study on isothermal adsorption of methane gas on three shale samples from Upper Paleozoic strata of the Ordos Basin. J. Petrol. Sci. Eng. 110, 132–138 (2013)

    Article  CAS  Google Scholar 

  16. Hao, S., Chu, W., Jiang, Q., Yu, X.: Methane adsorption characteristics on coal surface above critical temperature through Dubinin- Astakhov model and Langmuir model. Colloids Surfaces A 444, 104–113 (2014)

    Article  CAS  Google Scholar 

  17. Hu, H., Hao, F., Guo, X., Dai, F., Lu, Y., Ma, Y.: Investigation of methane sorption of overmature Wufeng-Longmaxi shale in the Jiaoshiba area, Eastern Sichuan Basin. China. Mar. Petrol. Geol. 91, 251–261 (2018)

    Article  CAS  Google Scholar 

  18. Hu, K., Mischo, H.: High-pressure methane adsorption and desorption in shales from the Sichuan Basin. Southwestern China. Energy Fuels 34, 2945–2957 (2020)

    Article  CAS  Google Scholar 

  19. Hwang, J., Joss, L., Pini, R.: Measuring and modelling supercritical adsorption of CO2 and CH4 on montmorillonite source clay. Microp. Mesop. Mat. 273, 107–121 (2019)

    Article  CAS  Google Scholar 

  20. Ismail, A.B., Li, A., Thu, K., Ng, K.C., Chun, W.: On the Thermodunamics of refrigerant + heterogeneous solid surfaces adsorption. Langmuir 29, 14494–14502 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Klewiah, I., Berawala, D., Walker, H., Andersen, P., Nadeau, P.: Review of experimental sorption studies of CO2 and CH4 in shales. J Nat. Gas Sci. Eng. 73, 103045 (2020)

    Article  CAS  Google Scholar 

  22. Kong, S.Q., Huang, X., Li, K., Song, X.: Adsorption/desorption isotherms of CH4 and C2H6 on typical shale samples. Fuel 255, 115632 (2019)

    Article  CAS  Google Scholar 

  23. Li, H., Li, P., Kang, J., Zhou, F., Deng, J.: Analytical model and experimental investigation of the adsorption thermodynamics of coalbed methane. Adsorption 25, 201–216 (2019)

    Article  CAS  Google Scholar 

  24. Li, J., Li, B., Ren, C., Yang, K., Zhang, Y.: Characterization of methane adsorption behavior on wet shale under different temperature conditions. Energy Fuels 34, 2832–2848 (2020)

    Article  CAS  Google Scholar 

  25. Li, J., Zhou, S., Gaus, G., Li, Y., Ma, Y., Chen, K., Zhang, Y.: Characterization of methane adsorption on shale and isolated kerogen from the Sichuan basin under pressure up to 60 MPa: experimental results and geological implications. Int. J. Coal Geol. 189, 83–93 (2018)

    Article  CAS  Google Scholar 

  26. Li, S., Deng, S., Zhao, R., Zhao, L., Xu, W., Yuan, X., Guo, Z.: Entropy analysis on energy-consumption process and improvement method of temperature/vacuum swing adsorption (TVSA) cycle. Energy 179, 1–10 (2019)

    Article  Google Scholar 

  27. Lithoxoos, G., Labropoulos, A., Peristeras, L., Kanellopoulos, N., Samios, J., Economou, I.: Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study. J. Supercrit. Fluid 55, 510–523 (2010)

    Article  CAS  Google Scholar 

  28. Ma, Y., Zhong, N., Yao, L., Huang, H., Lartera, S., Jiao, W.: Shale gas desorption behavior and carbon isotopic variations of gases from canister desorption of two sets of gas shales in south China. Mar. Petrol. Geol. 113, 104127 (2020)

    Article  CAS  Google Scholar 

  29. Murialdo, M., Stadie, N.P., Ahn, C., Fultz, B.: Observation and investigation of increasing isosteric heat of adsorption of ethane on zeolite-templated carbon. J. Phys. Chem. C 119, 944–950 (2015)

    Article  CAS  Google Scholar 

  30. Pozo, M., Pino, D., Bessieres, D.: Effect of thermal events on maturation and methane adsorption of Silurian black shales (Checa, Spain). Appl Clay Sci. 136, 208–218 (2017)

    Article  CAS  Google Scholar 

  31. Rahman, K.A., Chakraborty, A., Saha, B.B., Ng, K.C.: On thermodynamics of methane + carbonaceous materials adsorption. Int. J. Heat Mass Tran. 55, 565–573 (2012)

    Article  CAS  Google Scholar 

  32. Rahman, K.A., Loh, W.S., Yanagi, H., Chakraborty, A., Saha, B.B., Chun, W.G., Ng, K.C.: Experimental adsorption isotherm of methane onto activated carbon at sub and supercritical temperatures. J. Chem. Eng. Data 55, 4961–4967 (2010)

    Article  CAS  Google Scholar 

  33. Rexer, T.F., Mathia, E.J., Aplin, A.C., Thomas, K.M.: High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy Fuels 28, 2886–2901 (2014)

    Article  CAS  Google Scholar 

  34. Rexer, T.F.T., Benham, M.J., Aplin, A.C., Thomas, K.M.: Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels 27, 3099–3109 (2013)

    Article  CAS  Google Scholar 

  35. Rocky, K.A., Pal, A., Moniruzzaman, M., Saha, B.: Adsorption characteristics and thermodynamic property fields of polymerized ionic liquid and polyvinyl alcohol based composite/CO2 pairs. J Mol. Liq. 294, 111555 (2019)

    Article  CAS  Google Scholar 

  36. Shang, F., Zhu, Y., et al.: Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance. J. Natural Gas Sci. Eng. 84, 103676 (2020)

    Article  CAS  Google Scholar 

  37. Shen, C.Z., Grande, C.A., Li, P., Yu, J.G., Rodrigues, A.E.: Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads. Chem. Eng. J. 160, 39–407 (2010)

    Article  Google Scholar 

  38. Singh, V.K., Kumar, E.A.: Experimental investigation and thermodynamic analysis of CO2 adsorption on activated carbons for cooling system. J. CO Util. 17, 290–304 (2017)

    Article  CAS  Google Scholar 

  39. Srinivasan, K., Dutta, P., Ng, K., Saha, B.B.: Calculation of heat of adsorption of gases and refrigerants on activated carbons from direct measurements fitted to the Dubinin-Astakhov equation. Adsorpt. Sci. Technol. 30, 549–566 (2012)

    Article  CAS  Google Scholar 

  40. Stadie, N.P., Murialdo, M., Ahn, C., Fultz, B.: Unusual entropy of adsorbed methane on zeolite-templated carbon. J. Phys. Chem. C 119, 26409–26421 (2015)

    Article  CAS  Google Scholar 

  41. Tang, X., Ripepi, N., Luxbacher, K., Pitcher, E.: Adsorption models for methane in shales: review, comparison, and application. Energy Fuels 31, 10787–10801 (2017)

    Article  CAS  Google Scholar 

  42. Tang, X., Ripepi, N., Stadie, N.P., Yu, L.: Thermodynamic analysis of high pressure methane adsorption in Longmaxi shale. Fuel 193, 411–418 (2017)

    Article  CAS  Google Scholar 

  43. Tian, H., Li, T., Zhang, T., Xiao, X.: Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. Int. J. Coal Geol. 156, 36–49 (2016)

    Article  CAS  Google Scholar 

  44. Tsai, S.C., Juang, K.W.: Comparison of linear and nonlinear forms of siaotherm models for strontium sorption on a sodium bentonite. J. Radioanal Nucl. Chem. 243, 741–746 (2000)

    Article  CAS  Google Scholar 

  45. Velasco, S., Roman, F.L., White, J.A.: On the Clausius-Clapeyron vapor pressure equation. J. Chem. Educ. 86, 106–111 (2009)

    Article  CAS  Google Scholar 

  46. Wang, Y., Dong, D., Yang, H., He, L., Wang, S., Huang, J., Pu, B., Wang, S.: Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, southern Sichuan. China. Sci. China Earth Sci. 57, 313–322 (2014)

    Article  Google Scholar 

  47. Wang, Y., Zhu, Y.M., Liu, S.M., Zhang, R.: Methane adsorption measurements and modeling for organic-rich marine shale samples. Fuel 172, 301–309 (2016)

    Article  CAS  Google Scholar 

  48. Wang, Z., Tang, X.: New insights from supercritical methane adsorption in coal: gas resource estimation, thermodynamics, and engineering application. Energy Fuels 32, 5001–5009 (2018)

    Article  CAS  Google Scholar 

  49. Wu, Y., Fan, T., Jiang, S., Yang, X., Ding, H., Meng, M., Wei, D.: Methane adsorption capacities of the lower paleozoic marine shales in the yangtze platform, South China. Energy Fuels 29, 4160–4167 (2015)

    Article  CAS  Google Scholar 

  50. Yang, F., Hu, B., Xu, S., Meng, Q., Krooss, B.M.: Thermodynamic characteristic of methane sorption on shales from oil, gas and condensate windows. Energy Fuels 32, 10443–10456 (2018)

    Article  CAS  Google Scholar 

  51. Yang, F., Xie, C., Xu, S., Ning, Z., Krooss, B.M.: Supercritical methane sorption on organic-rich shales over a wide temperature range. Energy Fuels 31, 13427–13438 (2017)

    Article  CAS  Google Scholar 

  52. Zhang, T., Ellis, G.S., Ruppel, S.C., Milliken, K., Yang, R.: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 47, 120–131 (2012)

    Article  Google Scholar 

  53. Zhou, J.P., Liu, M., Xian, X.F., Jiang, Y., Liu, Q., Wang, X.: Measurements and modelling of CH4 and CO2 adsorption behaviors on shales: Implication for CO2 enhanced shale gas recovery. Fuel 251, 293–306 (2019)

    Article  CAS  Google Scholar 

  54. Zhou, S.W., Zhang, D.X., Wang, H.Y., Li, X.H.: A modified BET equation to investigate supercritical methane adsorption mechanisms in shale. Mar. Petrol. Geol. 105, 284–292 (2019)

    Article  CAS  Google Scholar 

  55. Zou, J., Rezaee, R., Liu, K.: Effect of temperature on methane adsorption in shale gas reservoirs. Energy Fuels 31, 12081–12092 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chongqing Science and Technology Commission Projects (No. cstc2017jcyj-yszx0012 and cstc2018jcyj-yszx0016), Natural Science Foundation of Hebei Province (E2020402072), the Project of the State Key Laboratory of Laser Interaction with Matter (SKLLIM1813) and The Handan Science and Technology Research and development projects (19422091008-31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 KB)

Derivation of thermodynamic properties and Comparison of results of different adsorption heat models(Figure S1) are available in Supplementary Information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Gu, M., Tao, M. et al. Adsorption characteristics and thermodynamic property fields of methane and Sichuan Basin shales. Adsorption 28, 41–54 (2022). https://doi.org/10.1007/s10450-021-00352-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00352-6

Keywords

Navigation