Skip to main content

Advertisement

Log in

Methane Adsorption Characteristics Under In Situ Reservoir Conditions of the WufengLongmaxi Shale in Southern Sichuan Basin, China: Implications for Gas Content Evaluation

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The accuracy of adsorbed gas content under actual in situ reservoir conditions is crucial for the evaluation of shale gas reserves. In this study, the characteristics of methane adsorption on the Wufeng–Longmaxi shale were investigated under a wide range of pressure (051 MPa) and actual in situ water saturation. Methaneshale adsorption exhibits the Gibbs excess adsorption phenomenon at high pressure. The excess adsorption amount needs be corrected to absolute adsorption amount, otherwise it will be seriously underestimated. The optimal supercritical methane adsorption model was determined by the corrected Akaike’s Information Criterion method. The methane adsorption amount of shale samples ranged from 1.521 to 4.079 m3/t. Adsorption capacity was dominated by the total organic carbon content as well as micropore volume and total specific surface area. Additionally, pore volume and specific surface area were contributed mainly by abundant micropores associated with organic matter. Thermodynamic parameters revealed that the adsorption of methane on shale was an exothermic process. As the temperature increased from 40 to 80 °C, the methane adsorption capacity decreased from 4.27 to 2.99 m3/t, a 30% decrease. The actual in situ water saturation correlated primarily with clay content, regardless of clay types, and increased with clay content. The formation of an adsorbed water film and the blockage of pores for gas adsorption by clusters of water molecules significantly lowered the adsorption capacity. The relative difference in the adsorption capacity increased with water saturation, with the adsorption capacity of water-bearing shales decreasing by 21–84% at a water saturation of 30–71% compared to dry shales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  • Borjigin, T., Shen, B., Yu, L., Yang, Y., Zhang, W., Tao, C., Xi, B., Zhang, Q., Bao, F., & Qin, J. (2017). Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin SW China. Petroleum Exploration and Development, 44(1), 69–78.

    Article  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.

    Article  Google Scholar 

  • Chalmers, G. R. L., & Bustin, R. M. (2008). Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1), 1–21.

    Article  Google Scholar 

  • Chen, L., Zuo, L., Jiang, Z., Jiang, S., Liu, K., Tan, J., & Zhang, L. (2019). Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale. Chemical Engineering Journal, 361, 559–570.

    Article  Google Scholar 

  • Chen, M., Kang, Y., Zhang, T., Li, X., Wu, K., & Chen, Z. (2018). Methane adsorption behavior on shale matrix at in-situ pressure and temperature conditions: Measurement and modeling. Fuel, 228, 39–49.

    Article  Google Scholar 

  • Curtis, J. B. (2002). Fractured shale-gas systems. AAPG Bulletin, 86(11), 1921–1938.

    Google Scholar 

  • Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Wu, N., Chen, Q., Wei, X., & Wang, R. (2020). Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chemical Engineering Journal, 383, 123191.

    Article  Google Scholar 

  • Dubinin, M. M., & Astakhov, V. A. A. (1971). Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science, 20(1), 13–16.

    Article  Google Scholar 

  • Fan, C., Li, H., Qin, Q., He, S., & Zhong, C. (2020). Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 191, 107138.

    Article  Google Scholar 

  • Feng, D., Li, X., Wang, X., Li, J., Sun, F., Sun, Z., Zhang, T., Li, P., Chen, Y., & Zhang, X. (2018). Water adsorption and its impact on the pore structure characteristics of shale clay. Applied Clay Science, 155, 126–138.

    Article  Google Scholar 

  • Gasparik, M., Bertier, P., Gensterblum, Y., Ghanizadeh, A., Krooss, B. M., & Littke, R. (2014). Geological controls on the methane storage capacity in organic-rich shales. International Journal of Coal Geology, 123, 34–51.

    Article  Google Scholar 

  • Gibbs, J. W. (1878). On the equilibrium of heterogeneous substances. American Journal of Science. https://doi.org/10.2475/ajs.s3-16.96.441

    Article  Google Scholar 

  • Gou, Q., Xu, S., Hao, F., Yang, F., Shu, Z., & Liu, R. (2021). The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation. Energy, 219, 119579.

    Article  Google Scholar 

  • Gou, Q., Xu, S., Hao, F., Zhang, B., Shu, Z., Yang, F., Wang, Y., & Li, Q. (2020). Quantitative calculated shale gas contents with different lithofacies: A case study of Fuling gas shale, Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 76, 103222.

    Article  Google Scholar 

  • Guan, Q., Dong, D., Wang, S., Huang, J., Wang, Y., Lu, H., & Zhang, C. (2016). Preliminary study on shale gas microreservoir characteristics of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 31, 382–395.

    Article  Google Scholar 

  • Guo, X., Li, Y., Borjigen, T., Wang, Q., Yuan, T., Shen, B., Ma, Z., & Wei, F. (2020). Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China. Petroleum Exploration and Development, 47(1), 204–213.

    Article  Google Scholar 

  • Han, L., Li, X., Guo, W., Ju, W., Cui, Y., Liu, Z., Qian, C., & Shen, W. (2022). Characteristics and dominant factors for natural fractures in deep shale gas reservoirs: A case study of the Wufeng-Longmaxi Formations in Luzhou Block Southern, China. Lithosphere, 2022(1), 9662175.

    Article  Google Scholar 

  • Hao, F., Zou, H., & Lu, Y. (2013). Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bulletin, 97(8), 1325–1346.

    Article  Google Scholar 

  • Hughes, J. D. (2013). A reality check on the shale revolution. Nature, 494(7437), 307–308.

    Article  Google Scholar 

  • Ji, L., Zhang, T., Milliken, K. L., Qu, J., & Zhang, X. (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Applied Geochemistry, 27(12), 2533–2545.

    Article  Google Scholar 

  • Jia, C., Zheng, M., & Zhang, Y. (2012). Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 39(2), 139–146.

    Article  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403.

    Article  Google Scholar 

  • Li, J., Li, B., & Gao, Z. (2021a). Water vapor adsorption behavior in shale under different temperatures and pore structures. Natural Resources Research, 30(3), 2789–2805.

    Article  Google Scholar 

  • Li, Q., Li, B., Mei, W., & Liu, Y. (2022). Genesis and sources of natural gas in fold-and-thrust belt: The Middle Permian in the NW Sichuan Basin. Marine and Petroleum Geology, 140, 105638.

    Article  Google Scholar 

  • Li, X., Jiang, Z., Jiang, S., Wang, S., & Cao, X. (2021b). Synergetic effects of matrix components and diagenetic processes on pore properties in the Lower Cambrian shale in Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 94(4–5), 104072.

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098.

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. Journal of Sedimentary Research, 79(12), 848–861.

    Article  Google Scholar 

  • Ma, X., Li, X., Liang, F., Wan, Y., Shi, Q., Wang, Y., Zhang, X., Che, M., Guo, W., & Guo, W. (2020). Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin. SW China. Petroleum Exploration and Development, 47(3), 594–602.

    Article  Google Scholar 

  • Middleton, R. S., Gupta, R., Hyman, J. D., & Viswanathan, H. S. (2017). The shale gas revolution: Barriers, sustainability, and emerging opportunities. Applied Energy, 199, 88–95.

    Article  Google Scholar 

  • Nie, H., Li, P., Dang, W., Ding, J., Sun, C., Liu, M., Wang, J., Du, W., Zhang, P., Li, D., & Su, H. (2022). Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China. Petroleum Exploration and Development, 49(4), 744–757.

    Article  Google Scholar 

  • Pan, L., Xiao, X., Tian, H., Zhou, Q., Chen, J., Li, T., & Wei, Q. (2015). A preliminary study on the characterization and controlling factors of porosity and pore structure of the Permian shales in Lower Yangtze region, Eastern China. International Journal of Coal Geology, 146, 68–78.

    Article  Google Scholar 

  • Pavlík, Z., Žumár, J., Medved, I., & Černý, R. (2012). Water vapor adsorption in porous building materials: Experimental measurement and theoretical analysis. Transport in Porous Media, 91(3), 939–954.

    Article  Google Scholar 

  • Peng, N. (2019). Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan, China. Marine and Petroleum Geology, 103, 456–472.

    Article  Google Scholar 

  • Qian, C., Li, X., Shen, W., Zhang, Q., Guo, W., Hu, Y., Cui, Y., & Jia, Y. (2022). Study on the pore structure and fractal characteristics of different lithofacies of wufeng–longmaxi formation shale in Southern Sichuan Basin, China. ACS Omega, 7, 8724–8738.

    Article  Google Scholar 

  • Qiu, Z., Liu, B., Dong, D., Lu, B., Yawar, Z., Chen, Z., & Schieber, J. (2020). Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for reservoir properties and paleoproductivity. Marine and Petroleum Geology, 121, 104594.

    Article  Google Scholar 

  • Rexer, T. F. T., Benham, M. J., Aplin, A. C., & Thomas, K. M. (2013). Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels, 27(6), 3099–3109.

    Article  Google Scholar 

  • Rexer, T. F., Mathia, E. J., Aplin, A. C., & Thomas, K. M. (2014). High-pressure methane adsorption and characterization of pores in posidonia shales and isolated kerogens. Energy & Fuels, 28(5), 2886–2901.

    Article  Google Scholar 

  • Ross, D. J. K., & Bustin, R. M. (2008). Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bulletin, 92(1), 87–125.

    Article  Google Scholar 

  • Sakurovs, R., Day, S., Weir, S., & Duffy, G. (2007). Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy & Fuels, 21(2), 992–997.

    Article  Google Scholar 

  • Shen, W., Li, X., Lu, X., Guo, W., Zhou, S., & Wan, Y. (2018). Experimental study and isotherm models of water vapor adsorption in shale rocks. Journal of Natural Gas Science and Engineering, 52, 484–491.

    Article  Google Scholar 

  • Shen, W., Li, X., Ma, T., Cai, J., Lu, X., & Zhou, S. (2021). High-pressure methane adsorption behavior on deep shales: Experiments and modeling. Physics of Fluids, 33(6), 063103.

    Article  Google Scholar 

  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603–619.

    Article  Google Scholar 

  • Spiess, A. N., & Neumeyer, N. (2010). An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. Bmc Pharmacology, 10(1), 1–11.

    Article  Google Scholar 

  • Stueck, H., Houseknecht, D., Franke, D., Gautier, D., Bahr, A., & Ladage, S. (2016). Shale-gas assessment: Comparison of gas-in-place versus performance-based approaches. Natural Resources Research, 25(3), 315–329.

    Article  Google Scholar 

  • Teng, J., Liu, B., Mastalerz, M., & Schieber, J. (2022). Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China. International Journal of Coal Geology, 253, 103970.

    Article  Google Scholar 

  • Tian, H., Li, T., Zhang, T., & Xiao, X. (2016). Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. International Journal of Coal Geology, 156, 36–49.

    Article  Google Scholar 

  • Wang, L., & Yu, Q. (2016). The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. Journal of Hydrology, 542, 487–505.

    Article  Google Scholar 

  • Wang, Y., Liu, L., & Cheng, H. (2021). Gas adsorption characterization of pore structure of organic-rich shale: Insights into contribution of organic matter to shale pore network. Natural Resources Research, 30(3), 2377–2395.

    Article  Google Scholar 

  • Wang, Y., Zhu, Y., Liu, S., & Zhang, R. (2016). Methane adsorption measurements and modeling for organic-rich marine shale samples. Fuel, 172, 301–309.

    Article  Google Scholar 

  • Wei, M., Zhang, L., Xiong, Y., Li, J., & Peng, P. (2016). Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption. Microporous and Mesoporous Materials, 227, 88–94.

    Article  Google Scholar 

  • Xinhua, M. A., Yang, Y., Wen, L., & Luo, B. (2019). Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1), 1–15.

    Article  Google Scholar 

  • Xu, S., Gou, Q., Hao, F., Zhang, B., Shu, Z., Lu, Y., & Wang, Y. (2020). Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Marine and Petroleum Geology, 114, 104211.

    Article  Google Scholar 

  • Xu, S., Hu, E., Li, X., & Xu, Y. (2021). Quantitative analysis of pore structure and its impact on methane adsorption capacity of coal. Natural Resources Research, 30(1), 605–620.

    Article  Google Scholar 

  • Yang, F., Ning, Z., & Liu, H. (2014). Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 115(2014), 378–384.

    Article  Google Scholar 

  • Yang, F., Ning, Z., Wang, Q., Zhang, R., & Krooss, B. M. (2016a). Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China: Insights to pore development and gas storage mechanism. International Journal of Coal Geology, 156, 12–24.

    Article  Google Scholar 

  • Yang, F., Ning, Z., Zhang, R., Zhao, H., & Krooss, B. M. (2015). Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China. International Journal of Coal Geology, 146, 104–117.

    Article  Google Scholar 

  • Yang, R., He, S., Yi, J., & Hu, Q. (2016b). Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Marine and Petroleum Geology, 70, 27–45.

    Article  Google Scholar 

  • Yang, R., Jia, A., He, S., Hu, Q., Dong, T., Hou, Y., & Yan, J. (2020). Water adsorption characteristics of organic-rich Wufeng and Longmaxi Shales, Sichuan Basin (China). Journal of Petroleum Science and Engineering, 193, 107387.

    Article  Google Scholar 

  • Zhang, J., Li, X., Xie, Z., Li, J., Zhang, X., Sun, K., & Wang, F. (2018). Characterization of microscopic pore types and structures in marine shale: Examples from the Upper Permian Dalong formation, Northern Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 59, 326–342.

    Article  Google Scholar 

  • Zhang, J., Tang, Y., He, D., Sun, P., & Zou, X. (2020a). Full-scale nanopore system and fractal characteristics of clay-rich lacustrine shale combining FE-SEM, nano-CT, gas adsorption and mercury intrusion porosimetry. Applied Clay Science, 196, 105758.

    Article  Google Scholar 

  • Zhang, L., Xiao, D., Lu, S., Jiang, S., Chen, L., Guo, T., & Wu, L. (2020b). Pore development of the Lower Longmaxi shale in the southeastern Sichuan Basin and its adjacent areas: Insights from lithofacies identification and organic matter. Marine and Petroleum Geology, 122, 104662.

    Article  Google Scholar 

  • Zhang, T., Ellis, G. S., Ruppel, S. C., Milliken, K., & Yang, R. (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Organic Geochemistry, 47, 120–131.

    Article  Google Scholar 

  • Zhou, S., Xue, H., Ning, Y., Guo, W., & Zhang, Q. (2018). Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel, 211, 140–148.

    Article  Google Scholar 

  • Zhu, H., Ju, Y., Huang, C., Chen, F., Chen, B., & Yu, K. (2020). Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale. Energy, 197, 117256.

    Article  Google Scholar 

  • Zou, C., Dong, D., Wang, S., Li, J., Li, X., Wang, Y., Li, D., & Cheng, K. (2010). Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6), 641–653.

    Article  Google Scholar 

  • Zou, J., Rezaee, R., Xie, Q., & You, L. (2019). Characterization of the combined effect of high temperature and moisture on methane adsorption in shale gas reservoirs. Journal of Petroleum Science and Engineering, 182, 106353.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 11802312 and U1762216) and National Science and Technology Major Project (Grand No. 2016ZX05023-001). Many thanks to the BeiShiDe instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xizhe Li or Weijun Shen.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Li, X., Zhang, Q. et al. Methane Adsorption Characteristics Under In Situ Reservoir Conditions of the WufengLongmaxi Shale in Southern Sichuan Basin, China: Implications for Gas Content Evaluation. Nat Resour Res 32, 1111–1133 (2023). https://doi.org/10.1007/s11053-023-10189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10189-1

Keywords

Navigation