Skip to main content
Log in

NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine, Al and Ga doped BNNTs: A DFT study

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A density function theory (DFT) is applied to investigate the interaction and adsorption of nitrate ion on the exterior and interior surface of the pristine, Al and Ga-doped BNNTs. The calculated results indicate that the values of adsorption energy and enthalpy of the NO3@ Al-doped BNNTs complex is more negative than pristine and Ga-doped. The adsorption energy nitrate ion on the surface of BNNTs is in order Al-doped > Ga-doped > pristine. This result demonstrates that the adsorption of nitrate ion on the surface of Al-doped BNNTs is stronger than Ga doped and pristine states. The chemical potential (µ) values for nitrate ion adsorption on the pristine, Al and Ga doped BNNTs are negative and is in order µpristine > µAl-doped > µGa-doped, it means that these compounds are stable. The values of ▽2ρ(BCP) and H(BCP) for [(NO3)O…B(BNNTs)] at the all adsorption models are positive and the |V/G| ratio for all models is > 2, it denotes the strong electrostatic interaction between nitrate ion with nanotube. In addition, the results of natural bonding orbital (NBO) and maximum charge transfer parameters (∆N) indicate that at all adsorption models, the charge transfer occurs from nitrate ion toward nanotube and nanotube acts as p-type semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi Peyghan, A., Baei, M.T., Moghimi, M., Hashemian, S.: Adsorption and electronic structure study of imidazole on (6,0) zigzag single-walled boron nitride nanotube. J. Clust. Sci. 24, 31–47 (2013)

    Google Scholar 

  • Ahmadi Peyghan, A., Aslanzadeh, S.A., Samiei, A.: Ammonia borane reaction with a BN nanotube: a hydrogen storage route. Monatsh. Chem. 145, 1083–1087 (2014)

    Article  Google Scholar 

  • Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  • Bulat, F.A., Toro-Labbé, A., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16(11), 1679–1691 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Chang, H., Lee, J.D., Lee, S.M., Lee, Y.H.: Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl. Phys. Lett. 79, 3863–3865 (2001)

    Article  CAS  Google Scholar 

  • Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., et al.: Boron nitride nanotubes. Science 269, 966–967 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E.: Controlling eutrophication: nitrogen and phosphorus. Science 323, 1014–1015 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Dai, J., Giannozzi, P., Yuan, J.: Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO + NO3 from NO2. Surface Sci. 603, 3234–3238 (2009)

    Article  CAS  Google Scholar 

  • Della Rocca, C., Belgiorno, V., Meriç, S.: Overview of in-situ applicable nitrate removal processes. Desalination 204, 46–62 (2007)

    Article  CAS  Google Scholar 

  • Deng, Z.-Y., Zhang, J.-M., Xu, K.-W.: Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: a first-principles study. Physica E 76, 47–51 (2016)

    Article  CAS  Google Scholar 

  • Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1972)

    Article  Google Scholar 

  • Fewtrell, L.: Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ. Health Perspect. 112, 1371–1374 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesan, P., Kamaraj, R., Vasudevan, S.: Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J. Taiwan Inst. Chem. Eng. 44, 808–814 (2013)

    Article  CAS  Google Scholar 

  • Hendricks, D., Water Treatment Unit Processes. Taylor and Francis Group, Boca Raton (2006)

    Google Scholar 

  • Hesabi, M., Behjatmanesh-Ardakani, R.: Interaction between anti-cancer drug hydroxycarbamide and boron nitride nanotube: a long-range corrected DFT study. Comput. Theo. Chem. 1117, 61–80 (2017)

    Article  CAS  Google Scholar 

  • Hosseinian, A., Salary, M., Arshadi, S., Vessally, E.: The interaction of phosgene gas with different BN nanocones: DFT studies. Solid State Commun. 269, 23–27 (2018)

    Article  Google Scholar 

  • Jamshid, N.: Modulating band gap and HOCO/LUCO energy of boron-nitride nanotubes under a uniform external electric fiel. Iran. J. Chem. Chem. Eng. 36, 93–106 (2017)

    Google Scholar 

  • Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-Garcia, J., Cohen, A.J., Yang, W.: Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakemam, J., Noei, M.: Density functional study on the functionalization of BN nanotubes with nitramide. Russ. J. Phys. Chem. A. 88, 1751–1756 (2014)

    Article  CAS  Google Scholar 

  • Koswattage, K.R., Shimoyama, I., Baba, Y., Sekiguchi, T., Nakagaw, K.: ab Study on selective adsorption of deuterium on boron nitride using photon-stimulated ion-desorption. App. Surface Sci. 258, 1561–1564 (2011)

    Article  CAS  Google Scholar 

  • Mahdavifar, Z., Abbasi, N.: The influence of Cu-doping on aluminum nitride, silicon carbide and boron nitride nanotubes’ ability to detect carbon dioxide; DFT study. Physica E 56, 268–276 (2014)

    Article  CAS  Google Scholar 

  • Milmile, S.N., Pande, J.V., Karmakar, S., Bansiwal, A., Chakrabarti, T., Biniwale, R.B.: Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination 276, 38–44 (2011)

    Article  CAS  Google Scholar 

  • Mishra, P.C., Patel, R.K.: Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J. Environ. Manag. 90, 519–522 (2009)

    Article  CAS  Google Scholar 

  • Mossa Hosseini, S., Ataie-Ashtiani, B., Kholghi, M.: Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276, 214–221 (2011)

    Article  CAS  Google Scholar 

  • Noei, M.: Different electronic sensitivity of BN and AlN nanoclusters to SO2 gas: DFT studies. Vacuum. 135, 44–49 (2017)

    Article  CAS  Google Scholar 

  • Noei, M., Ahmadaghaei, N., Salari, A.: A., Ethyl benzene detection by BN nanotube: DFT studies. J. Saudi Chem. Soc. 21, S12–S16 (2017)

    Article  CAS  Google Scholar 

  • O’Boyle, N., Tenderholt, A., Langner, K.: A library for package-independent computational chemistry algorithms. J. Comp. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  • Öztürk, N., Bektas, T.E.: Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. B. 112, 155–162 (2004)

    Article  Google Scholar 

  • Paura, E.N.C., da Cunha, W.F., Martins, J.B.L., e Silva, G.M., Roncaratti, L.F., Gargano, R.: Carbon dioxide adsorption on doped boron nitride nanotubes. RSC Adv. 4, 28249–28258 (2014)

    Article  CAS  Google Scholar 

  • Rezaei-Sameti, M., Samadi Jamil, E.: The adsorption of CO molecule on pristine, As, B, BAs doped (4,4) armchair AlNNTs: a computational study. J. Nanostruct. Chem. 3, 1–9 (2016)

    Google Scholar 

  • Rezaei-Sameti, M., Yaghoobi, S.: Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput. Condens. Matter 3, 21–29 (2015)

    Article  Google Scholar 

  • Rezaei–Sameti, M., Moradi, F.: Interaction of isoniazid drug with the pristine and Ni-doped of (4, 4) armchair GaNNTs: a first principle study. J. Incl. Phenom. Macrocycl. Chem. 88, 209–218 (2017)

    Article  Google Scholar 

  • Rodriguez Juarez, A., Chigo Anota, E., Cocoletzi, H., Flores Riveros, A.: Adsorption of chitosan on BN nanotubes: a DFT investigation. App. Surface Sci. 268, 259–264 (2013)

    Article  Google Scholar 

  • Roohi, H., Maleki, L., Erfani Moradzadeh, M.: Exploring electronic properties and NO gas sensitivity of Si-doped SW-BNNTs under axial tensile strain. J. Mater. Sci. 52, 9739–9763 (2017)

    Article  CAS  Google Scholar 

  • Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081 (1994)

    Article  CAS  Google Scholar 

  • Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phy. Rev. Lett. 52, 997–1000 (1984)

    Article  CAS  Google Scholar 

  • Samatya, S., Kabay, N., Yuksel, U., Arda, M., Yuksel, M.: Removal of nitrate fromaqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 66, 1206–1214 (2006a)

    Article  CAS  Google Scholar 

  • Samatya, S., Kabay, N., Yuksel, U., Arda, M., Yuksel, M.: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 66, 1206–1214 (2006b)

    Article  CAS  Google Scholar 

  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)

    Article  CAS  Google Scholar 

  • Shao, P., Kuang, X.Y., Ding, L.P., Yang, J., Zhong, M.M.: Can CO2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube? Appl. Surf. Sci. 285, 350–356 (2013)

    Article  CAS  Google Scholar 

  • Soltani, A., Raz, S.G., Rezaei, V.J., Khalaji, A.D., Savar, M.: Ab initio investigation of Al-and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Appl. Surf. Sci. 263, 619–625 (2012)

    Article  CAS  Google Scholar 

  • Soltani, A., Ahmadi Peyghan, A., Bagheri, Z.: H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Physica E 48, 176–180 (2013)

    Article  CAS  Google Scholar 

  • Tabtimsai, C., Nonsri, A., Gratoo, N., Massiri, N., Suvanvapee, P., Wanno, B.: Carbon monoxide adsorption on carbon atom doped perfect and Stone–Wales defect single-walled boron nitride nanotubes: a DFT investigation. Monatsh Chem. 145, 725–735(2014)

    Article  CAS  Google Scholar 

  • Tontapha, S., Ruangpornvisuti, V., Wanno, B.: Density functional investigation of CO adsorption on Ni-doped single-walled armchair (5, 5) boron nitride nanotubes. J. Mol. Model. 19, 239–245 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Guo, C.: The noble gases adsorption on boron-rich boron nitride nanotubes: a theoretical investigation. Superlat. Microstr. 107, 97–103 (2017)

    Article  CAS  Google Scholar 

  • Wang, R.X., Zhang, D.J.: Theoretical study of the adsorption of carbon monoxide on pristine and silicon-doped boron nitride nanotubes. Aust. J. Chem. 61, 941–945 (2008)

    Article  CAS  Google Scholar 

  • Wang, R.X., Zhang, D.J., Liu, C.B.: The germanium-doped boron nitride nanotube serving as a potential resource for the detection of carbon monoxide and nitric oxide. Comput. Mater. Sci. 82, 361–366 (2014)

    Article  CAS  Google Scholar 

  • Wang, R., Zhang, D., Liu, C.: DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Chemosphere 168, 18–24 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Wehling, T.O., Noveselov, K.S., Morozov, S.V., Vdovin, E.E., Katsnelson, M.I., Geim, A.K., Lichtenstein, A.I.: Molecular doping of graphene. Nano Lett. 8, 173–177 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Huo, Y.P., Zhang, J.M.: First-principles study of CO and NO adsorption on transition metals doped (8, 0) boron nitride nanotube. Appl. Surf. Sci. 258, 6391–6397 (2012)

    Article  CAS  Google Scholar 

  • Xing, X., Gao, B.-Y., Zhong, Q.-Q., Yue, Q.-Y., Li, Q.: Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties. J. Hazard. Mater. 186, 206–211 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Yim, W.L., Gong, X.G., Liu, Z.F.: Chemisorption of NO2 on carbon nanotubes. J. Phys. Chem. B. 107, 9363–9369 (2003)

    Article  CAS  Google Scholar 

  • Zhang, M.L., Ning, T., Zhang, S.Y., Li, Z.M., Yuan, Z.H., Cao, Q.X.: Response time and mechanism of Pd modified TiO2 gas sensor. Mater. Sci. Semicond. Process. 17, 149–154 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Computational information center of Malayer University for providing the necessary facilities to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezaei-Sameti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3219 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei-Sameti, M., Zarei, P. NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine, Al and Ga doped BNNTs: A DFT study. Adsorption 24, 757–767 (2018). https://doi.org/10.1007/s10450-018-9977-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9977-7

Keywords

Navigation