Skip to main content

Advertisement

Log in

Adsorption of CO2 and N2 in Na–ZSM-5: effects of Na+ and Al content studied by Grand Canonical Monte Carlo simulations and experiments

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Zeolite crystals with cations present, such as ZSM-5, are widely used for gas sequestration, separations, and catalysis. One possible application is as an adsorbent to separate CO2 from N2 in flue gas mixtures. Typically, the zeolite framework is of a SiO2 composition, but tetravalent Si atoms can be replaced with trivalent Al atoms. This change in valence creates a charge deficit, requiring cations to maintain the charge balance. Experimental studies have demonstrated that cations enhance adsorption of polar molecules due to strong electrostatic interactions. While numerous adsorption studies have been performed for silicalite-1, the all-silica form of ZSM-5, fewer studies on ZSM-5 have been performed. Grand Canonical Monte Carlo simulations were used to study adsorption of CO2 and N2 in Na–ZSM-5 at T = 308 K, which is ZSM-5 with Na+ counter-ions present. The simulations suggest that a lower Si/Al ratio (or higher Na+ and Al content) substantially increases adsorption at low pressures. At high pressures, however, the effect of the Al substitutions is minor, because the Al/Na+ sites are saturated with guest molecules. Similarly, a lower Si/Al ratio also increases the isosteric heat of adsorption at low loading, but the isosteric heats approach the silicalite-1 reference values at higher loadings. Comparison of simulations and experimental measurements of the adsorption isotherms and isosteric heats points to the importance of carefully considering the role of charge on the Na+ cations, and suggest that the balancing cations in ZSM-5, here Na+, only have partial charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alvarado-Swaisgood, A., Barr, M.K., Hay, P.J., Redondo, A.: Ab initio quantum chemical calculations of aluminum substitution in zeolite ZSM-5. J. Phys. Chem. 95, 10031–10036 (1991)

    Article  CAS  Google Scholar 

  • Beerdsen, E., Dubbeldam, D., Smit, B., Vlugt, T.J.H., Calero, S.: Simulating the effect of nonframework cations on the adsorption of alkanes in MFI-type zeolites. J. Phys. Chem. B 107, 12088–12096 (2003)

    Article  CAS  Google Scholar 

  • Beerdsen, E., Smit, B., Calero, S.: The influence of non-framework sodium cations on the adsorption of alkanes in MFI- and MOR-type zeolites. J. Phys. Chem. B 106, 10659–10667 (2002)

    Article  CAS  Google Scholar 

  • Bernal, M.P., Coronas, J., Menendez, M., Santamaria, J.: Separation of CO2/N2 mixtures using MFI-type zeolite membranes. AIChE J. 50, 127–135 (2004)

    Article  CAS  Google Scholar 

  • Bobuatong, K., Limtrakul, J.: Effects of the zeolite framework on the adsorption of ethylene and benzene on alkali-exchanged zeolites: an ONIOM study. Appl. Catal. A 253, 49–64 (2003)

    Article  CAS  Google Scholar 

  • Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R.: Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9, 013007–013114 (2008)

    Article  Google Scholar 

  • Bowen, T.C., Li, S., Noble, R.D., Falconer, J.L.: Driving force for pervaporation through zeolite membranes. J. Membr. Sci. 225, 165–176 (2003)

    Article  CAS  Google Scholar 

  • Calleja, G., Pau, J., Calles, J.A.: Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. J. Chem. Eng. Data 43, 994–1003 (1998)

    Article  CAS  Google Scholar 

  • Coppens, M.-O., Bell, A.T., Chakraborty, A.K.: Dynamic Monte Carlo and mean field study of the effect of strong adsorption sites on self-diffusion in zeolites. Chem. Eng. Sci. 54, 3455–3463 (1999)

    Article  CAS  Google Scholar 

  • Coppens, M.-O., Bell, A.T., Chakraborty, A.K.: Effects of topology and molecular occupancy on self-diffusion in lattice models of zeolites—Monte-Carlo simulations. Chem. Eng. Sci. 53, 2053–2061 (1998)

    Article  CAS  Google Scholar 

  • Coppens, M.-O., Iyengar, V.: Testing the consistency of the Maxwell–Stefan formulation when predicting self-diffusion in zeolites with strong adsorption sites. Nanotechnology 16, 442–448 (2005)

    Article  CAS  Google Scholar 

  • Couck, S., Remy, T., Baron, G.V., Gascon, J., Kapteijn, F., Denayer, J.: A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (AI) metal–organic framework. Phys. Chem. Chem. Phys. 12, 9413–9418 (2010)

    Article  CAS  Google Scholar 

  • Danilczuk, M., Pogocki, D., Lund, A.: Interaction of (CH2OH) with silver cation in Ag-A/CH3OH zeolite: a DFT study. Chem. Phys. Lett. 469, 153–156 (2009)

    Article  CAS  Google Scholar 

  • Duerinck, T., Couck, S., Vermoortele, F., De Vos, D.E., Baron, G.V., Denayer, J.: Pulse gas chromatography study of adsorption of substituted aromatics and heterocyclic molecules on MIL-47 at zero coverage. Langmuir 28, 13883–13891 (2012)

    Article  CAS  Google Scholar 

  • Dunne, J.A., Mariwals, R., Rao, R., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996a)

    Article  CAS  Google Scholar 

  • Dunne, J.A., Rao, R., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, HZSM-5, and NaZSM-5 zeolites. Langmuir 12, 5896–5904 (1996b)

    Article  CAS  Google Scholar 

  • Düren, T., Sarkisov, L., Yaghi, O.M., Snurr, R.Q.: Design of new materials for methane storage. Langmuir 20, 2683–2689 (2004)

    Article  Google Scholar 

  • Egerton, T.A., Stone, F.S.: Adsorption of carbon monoxide by calcium-exchanged zeolite Y. Trans. Faraday Soc. 66, 2364–2377 (1970)

    Article  CAS  Google Scholar 

  • Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, vol. 2. Academic Press, London, UK (2002)

    Google Scholar 

  • Gallo, M., Nenoff, T.M., Mitchell, M.C.: Selectivities for binary mixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by Grand Canonical Monte Carlo techniques. Fluid Phase Equilib. 247, 135–142 (2006)

    Article  CAS  Google Scholar 

  • Garcia-Perez, E., Parra, J.B., Ania, C.O., Garcia-Sanchez, A., van Baten, J.M., Krishna, R., Dubbeldam, D., Calero, S.: A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13, 469–476 (2007)

    Article  CAS  Google Scholar 

  • Goj, A., Sholl, D., Akten, E.D., Kohen, D.: Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. J. Phys. Chem. B 106, 8367–8375 (2002)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane, and nitrogen: pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30. Sep. Sci. Technol. 37, 33–60 (2002)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210 (2003)

    Article  CAS  Google Scholar 

  • Harlick, P.J.E., Tezel, F.H.: An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 76, 71–79 (2004)

    Article  CAS  Google Scholar 

  • Heuchel, M., Snurr, R.Q., Buss, E.: Adsorption of CH4–CF4 mixtures in silicalite: simulation, experiment, and theory. Langmuir 13, 6795–6804 (1997)

    Article  CAS  Google Scholar 

  • Himeno, S., Tomita, T., Suzuki, K., Nakayama, K., Yajima, K., Yoshida, S.: Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 46, 6989–6997 (2007)

    Article  CAS  Google Scholar 

  • Hirotani, A., Mizukami, K., Miura, R., Takaba, H., Miya, T., Fahmi, A., Stirling, A., Kubo, M., Miyamoto, A.: Grand Canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and Na–ZSM-5. Appl. Surf. Sci. 120, 81–84 (1997)

    Article  CAS  Google Scholar 

  • Jaramillo, E., Chandross, M.: Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J. Phys. Chem. B 108, 20155–20159 (2004)

    Article  CAS  Google Scholar 

  • June, R.L., Bell, A.T., Theodorou, D.: Prediction of low occupancy sorption of alkanes in silicalite. J. Phys. Chem. 94, 1508–1516 (1990)

    Article  CAS  Google Scholar 

  • Kärger, J., Ruthven, D.: Diffusion in Zeolites and Other Microporous Materials. Wiley, New York (1992)

    Google Scholar 

  • Katoh, M., Yamazaki, T., Ozawa, S.: IR spectroscopic study of adsorption of binary gases over ion-exchanged ZSM-5 zeolites. J. Colloid Interface Sci. 203, 447–455 (1998)

    Article  CAS  Google Scholar 

  • Katoh, M., Yoshikawa, T., Tomonari, T., Katayama, K., Tomida, T.: Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N2 mixtures. J. Colloid Interface Sci. 226, 145–150 (2000)

    Article  CAS  Google Scholar 

  • Keil, F.J., Krishna, R., Coppens, M.-O.: Modeling of diffusion in zeolites. Rev. Chem. Eng. 16, 71–197 (2000)

    Article  CAS  Google Scholar 

  • Kusakabe, K., Kuroda, T., Morooka, S.: Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes. J. Membr. Sci. 148, 13–23 (1998)

    Article  CAS  Google Scholar 

  • Lachet, V., Boutin, A., Tavitian, B., Fuchs, A.: Grand Canonical Monte Carlo simulations of adsorptions of mixtures of xylene molecules in faujasite zeolites. Faraday Discuss. 106, 307–323 (1997)

    Article  CAS  Google Scholar 

  • Liu, S., Yang, X.: Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites. J. Chem. Phys. 124, 244705-1–244705-10 (2006)

    Google Scholar 

  • Liu, X., Newsome, D., Coppens, M.-O.: Dynamic Monte Carlo simulations of binary self-diffusion in ZSM-5. Microporous Mesoporous Mater. 125, 149–159 (2009)

    Article  CAS  Google Scholar 

  • Makrodimitris, K., Papadopoulos, G.K., Theodorou, D.: Prediction of permeation properties of CO2 and N2 through silicalite via molecular simulations. J. Phys. Chem. B 105, 777–788 (2001)

    Article  CAS  Google Scholar 

  • Maurin, G., Llewellyn, Ph., Poyet, Th., Kuchta, B.: Influence of extra-framework cations on the adsorption properties of X-faujasite systems: microcalorimetry and molecular simulations. J. Phys. Chem. B 109, 125–129 (2005)

    Article  CAS  Google Scholar 

  • Mikosch, H., Uzunova, E.L., Nikolov, G.S.: Interaction of molecular nitrogen and oxygen with extraframework cations in zeolites with double six-membered rings of oxygen-bridged silicon and aluminum atoms: a DFT study. J. Phys. Chem. B 109, 11119–11125 (2005)

    Article  CAS  Google Scholar 

  • Mu, B., Schenecker, P.M., Walton, K.S.: Gas adsorption study on mesoporous metal–organic framework UMCM-1. J. Phys. Chem. C 114, 6464–6471 (2010)

    Article  CAS  Google Scholar 

  • Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48, 145–160 (2002)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–126 (1965)

    Article  CAS  Google Scholar 

  • Noack, M., Kölsch, P., Caro, J., Schneider, M., Toussaint, P., Sieber, I.: MFI membranes of different Si/Al ratios for pervaporation and steam permeation. Microporous Mesoporous Mater. 35–36, 253–265 (2000)

    Article  Google Scholar 

  • Pan, L., Sander, M.B., Huang, X.Y., Li, J., Smith, M., Bittner, E., Bockrath, B., Johnson, J.K.: Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J. Am. Chem. Soc. 126, 1308–1309 (2004)

    Article  CAS  Google Scholar 

  • Papadopoulos, G.K., Jobic, H., Theodorou, D.: Transport diffusivity of N2 and CO2 in silicalite: coherent quasielastic neutron scattering measurements and molecular dynamics simulations. J. Phys. Chem. B 108, 12748–12756 (2004)

    Article  CAS  Google Scholar 

  • Pillai, R.S., Peter, S.A., Jasra, R.V.: Correlation of sorption behavior of nitrogen, oxygen, and argon with Ca2+ locations in zeolite A: a Grand Canonical Monte Carlo simulation study. Langmuir 23, 8899–8908 (2007)

    Article  CAS  Google Scholar 

  • Pillai, R.S., Sethia, G., Jasra, R.V.: Sorption of CO, CH4, and N2 in alkali metal ion exchanged zeolite-X: Grand Canonical Monte Carlo simulation and volumetric measurements. Ind. Eng. Chem. Res. 49, 5816–5825 (2010)

    Article  CAS  Google Scholar 

  • Sanchez, A.G., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J.H., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113, 8814–8820 (2009)

    Article  Google Scholar 

  • Selassie, D., Davis, D., Dahlin, J., Feise, E., Haman, G., Sholl, D., Kohen, D.: Atomistic simulations of CO2 and N2 diffusion in silica zeolites: the impact of pore size and shape. J. Phys. Chem. C 112, 16521–16531 (2008)

    Article  CAS  Google Scholar 

  • Siriwardane, R.V., Shen, M.S., Fisher, E.P., Poston, J.A.: Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001)

    Article  CAS  Google Scholar 

  • Sklenak, S., Dedecek, J., Li, C., Wichterlova, B., Gabova, V., Sierka, M., Sauer, J.: Aluminum siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations. Phys. Chem. Chem. Phys. 11, 1237–1247 (2009)

    Article  CAS  Google Scholar 

  • Skoulidas, A.I., Sholl, D.: Molecular dynamics simulations of self-diffusivities, corrected-diffusivities, and transport-diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J. Phys. Chem. A 107, 10132–10141 (2003)

    Article  CAS  Google Scholar 

  • Skoulidas, A.I., Sholl, D.S.: Transport diffusivities of CH4, CF4, He, Ne, Ar, Xe, and SF6 in silicalite from atomistic simulations. J. Phys. Chem. B 106, 5058–5067 (2002)

    Article  CAS  Google Scholar 

  • Smit, B., Maesen, T.L.M.: Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108, 4125–4184 (2008)

    Article  CAS  Google Scholar 

  • Stave, M.S., Nicholas, J.B.: Density functional studies of zeolites. 2. Structure and acidity of [T]–ZSM-5 models (T = B, Al, Ga, Fe). J. Phys. Chem. 99, 15046–15061 (1995)

    Article  CAS  Google Scholar 

  • Sun, M.S., Shah, D.B., Xu, H., Talu, O.: Adsorption equilibria of C1 to C4 alkanes, CO2, and SF6 on silicalite. J. Phys. Chem. B 102, 1466–1473 (1998)

    Article  CAS  Google Scholar 

  • van Koningsveld, H., van Bekkum, H., Jansen, J.C.: On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta. Crystallogr. B43, 127–132 (1987)

    Article  Google Scholar 

  • Vlugt, T.J.H., van der Eerden, J.P.J.M., Dijkstra, M., Smit, B., Frenkel, D.: Introduction to Molecular Simulation and Statistical Thermodynamics, vol. 2. Technical University of Delft, Delft, The Netherlands (2008). http://homepage.tudelft.nl/v9k6y/imsst/book-15-6-2009.pdf

  • Walton, K.S., Abney, M.B., LeVan, D.: CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Microporous Mesoporous Mater. 91, 78–84 (2006)

    Article  CAS  Google Scholar 

  • Wirawan, S.K., Creaser, D.: CO2 Adsorption on silicalite-1 and cation exchanged ZSM-5 zeolites using a step change method. Microporous Mesoporous Mater. 91, 196–205 (2006a)

    Article  CAS  Google Scholar 

  • Wirawan, S.K., Creaser, D.: Multicomponent H2/CO/CO2 adsorption on BaZSM-5 zeolite. Sep. Purif. Technol. 52, 224–231 (2006b)

    Article  CAS  Google Scholar 

  • Xu, J., Mojet, B.L., van Ommen, J.G., Lefferts, L.: Effect of Ca2+ position in zeolite Y on selective oxidation of propane at room temperature. J. Phys. Chem. B 108, 15728–15734 (2004)

    Article  CAS  Google Scholar 

  • Yamazaki, T., Katoh, M., Ozawa, S., Ogino, Y.: Adsorption of CO2 over univalent cation-exchanged ZSM-5 zeolites. Mol. Phys. 80, 313–324 (1993)

    Article  CAS  Google Scholar 

  • Yang, G., Wang, Y., Zhou, D., Liu, X., Han, X., Bao, X.: Density functional theory calculations on various M/ZSM-5 zeolites: interaction with probe molecule H2O and relative hydrothermal stability predicted by binding energies. J. Mol. Catal. A 237, 36–44 (2005)

    Article  CAS  Google Scholar 

  • Yun, J.H., Düren, T., Keil, F.J., Seaton, N.A.: Adsorption of methane, ethane, and their binary mixtures on MCM-41: experimental evaluation of methods for their prediction of adsorption equilibrium. Langmuir 18, 2693–2701 (2002)

    Article  CAS  Google Scholar 

  • Zhou, Z., Yang, J., Zhang, Y., Chang, L., Sun, W., Wang, J.: NaA zeolite/carbon nanocomposite thin films with high permeance for CO2/N2 separation. Sep. Purif. Technol. 55, 392–395 (2007)

    Article  CAS  Google Scholar 

  • Zhu, W.D., Hrabanek, P., Gora, L., Kapteijn, F., Moulijn, J.A.: Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45, 767–776 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D. Newsome and M.-O. Coppens gratefully acknowledge funding from the European Union via STREP Project 014032, FUSION (Fundamental Studies of Transport in Inorganic Nanostructures), discussions with T. Vlugt (Delft University of Technology) and F. Siperstein (University of Manchester), and computational time at Delft University of Technology and at the Computational Center for Nanotechnology Innovations (CCNI) of Rensselaer Polytechnic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Olivier Coppens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 42 kb)

Supplementary material 2 (XLSX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newsome, D., Gunawan, S., Baron, G. et al. Adsorption of CO2 and N2 in Na–ZSM-5: effects of Na+ and Al content studied by Grand Canonical Monte Carlo simulations and experiments. Adsorption 20, 157–171 (2014). https://doi.org/10.1007/s10450-013-9560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9560-1

Keywords

Navigation