Skip to main content
Log in

Molecular Dynamics Simulation of Pore-Size Effects on Gas Adsorption Kinetics in Zeolites

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Strong gas-mineral interactions or slow adsorption kinetics require a molecular-level understanding of both adsorption and diffusion for these interactions to be properly described in transport models. In this combined molecular simulation and experimental study, noble gas adsorption and mobility is investigated in two naturally abundant zeolites whose pores are similar in size (clinoptilolite) and greater than (mordenite) the gas diameters. Simulated adsorption isotherms obtained from grand canonical Monte Carlo simulations indicate that both zeolites can accommodate even the largest gas (Rn). However, gas mobility in clinoptilolite is significantly hindered at pore-limiting window sites, as seen from molecular dynamics simulations in both bulk and slab zeolite models. Experimental gas adsorption isotherms for clinoptilolite confirm the presence of a kinetic barrier to Xe uptake, resulting in the unusual property of reverse Kr/Xe selectivity. Finally, a kinetic model is used to fit the simulated gas loading profiles, allowing a comparison of trends in gas diffusivity in the zeolite pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials, or may be made available through appropriate requests.

References

  • Ackley, M. W., & Yang, R. T. (1991). Diffusion in ion-exchanged clinoptilolites. AIChE Journal, 37, 1645–1656.

    Article  Google Scholar 

  • Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. Clarendon Press.

    Google Scholar 

  • Aqvist, J. (1990). Ion-water interaction potentials derived from free energy perturbation simulations. Journal of Physical Chemistry, 94, 8021–8024.

    Article  Google Scholar 

  • Barrer, R. M. (1949). Transient flow of gases in sorbents providing uniform capillary networks of molecular dimensions. Transactions of the Faraday Society, 45, 358–373.

    Article  Google Scholar 

  • Beerdsen, E., Smit, B., & Dubbeldam, D. (2004). Molecular simulation of loading dependent slow diffusion in confined systems. Physical Review Letters, 93, 248301.

    Article  Google Scholar 

  • Bourg, I. C., Beckingham, L. E., & DePaolo, D. J. (2015). The nanoscale basis of CO2 trapping for geologic storage. Environmental Science & Technology, 49, 10265–10284.

    Article  Google Scholar 

  • Buttefey, S., Boutin, A., Mellot-Draznieks, C., & Fuchs, A. H. (2001). A simple model for predicting the Na+ distribution in anhydrous NaY and NaX zeolites. The Journal of Physical Chemistry B, 105, 9569–9575.

  • Carrigan, C. R., Heinle, R. A., Hudson, G. B., Nitao, J. J., & Zucca, J. J. (1996). Trace gas emissions on geological faults as indicators of underground nuclear testing. Nature, 382, 528–531.

    Article  Google Scholar 

  • Carrigan, C. R., Sun, Y., & Antoun, T. (2022). Evaluation of subsurface transport processes of delayed gas signatures applicable to underground nuclear explosions. Scientific Reports, 12, 13169.

    Article  Google Scholar 

  • Coudert, F. X., Cailliez, F., Vuilleumier, R., Fuchs, A. H., & Boutin, A. (2009). Water nanodroplets confined in zeolite pores. Faraday Discussions, 141, 377–398.

    Article  Google Scholar 

  • Crank, J. (1948). XlV. A diffusion problem in which the amount of diffusing substance is finite. IV. Solutions for small values of the time. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 362–376.

  • Crank, J. (1975). The mathematics of diffusion. Oxford University Press.

    Google Scholar 

  • Dang, L. X. (1995). Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: A molecular dynamics study. Journal of the American Chemical Society, 117, 6954–6960.

    Article  Google Scholar 

  • Di Lella, A., Desbiens, N., Boutin, A., Demachy, I., Ungerer, P., Bellat, J. P., & Fuchs, A. H. (2006). Molecular simulation studies of water physisorption in zeolites. Physical Chemistry Chemical Physics, 8, 5396–5406.

    Article  Google Scholar 

  • Dubbeldam, D., Beerdsen, E., Vlugt, T. J. H., & Smit, B. (2005). Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. Journal of Chemical Physics, 122, 224712.

    Article  Google Scholar 

  • Dutta, R. C., & Bhatia, S. K. (2018). Interfacial barriers to gas transport in zeolites: Distinguishing internal and external resistances. Physical Chemistry Chemical Physics, 20, 26386–26395.

    Article  Google Scholar 

  • Dutta, R. C., & Bhatia, S. K. (2019). Interfacial barriers to gas transport: Probing solid-gas interfaces at the atomistic level. Molecular Simulation, 45, 1148–1162.

    Article  Google Scholar 

  • Feldman, J., Paul, M., Xu, G., Rademacher, D. X., Wilson, J., & Nenoff, T. M. (2020). Effects of natural zeolites on field-scale geologic noble gas transport. Journal of Environmental Radioactivity, 220–221, 106279.

    Article  Google Scholar 

  • Geng, L., Li, G., Zitha, P., Tian, S., Sheng, M., & Fan, X. (2016). A diffusion–viscous flow model for simulating shale gas transport in nano-pores. Fuel, 181, 887–894.

    Article  Google Scholar 

  • Greathouse, J. A., Hart, D. B., Bowers, G. M., Kirkpatrick, R. J., & Cygan, R. T. (2015). Molecular simulation of structure and diffusion at smectite–water interfaces: Using expanded clay interlayers as model nanopores. Journal of Physical Chemistry C, 119, 17126–17136.

    Article  Google Scholar 

  • Greathouse, J. A., Cygan, R. T., Fredrich, J. T., & Jerauld, G. R. (2016). Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. The Journal of Physical Chemistry C, 120, 1640–1649.

    Article  Google Scholar 

  • Green, C. T., Luo, W., Conaway, C. H., Haase, K. B., Baker, R. J., & Andraski, B. J. (2019). Spatial fingerprinting of biogenic and anthropogenic volatile organic compounds in an arid unsaturated zone. Vadose Zone Journal, 18, 190047.

    Article  Google Scholar 

  • Guo, S. Y., Yu, C. L., Gu, X. H., Jin, W. Q., Zhong, J., & Chen, C. L. (2011). Simulation of adsorption, diffusion, and permeability of water and ethanol in naa zeolite membranes. Journal of Membrane Science, 376, 40–49.

    Article  Google Scholar 

  • Han, K. N., Bernardi, S., Wang, L. Z., & Searles, D. J. (2017). Water structure and transport in zeolites with pores in one or three dimensions from molecular dynamics simulations. Journal of Physical Chemistry C, 121, 381–391.

    Article  Google Scholar 

  • Harvey, J. A., & Thompson, W. H. (2015). Thermodynamic driving forces for dye molecule position and orientation in nanoconfined solvents. Journal of Physical Chemistry B, 119, 9150–9159.

    Article  Google Scholar 

  • Hassanzadeh, A., & Sabzi, F. (2021). Prediction of CO2 and H2 solubility, diffusion, and permeability in MFI zeolite by molecular dynamics simulation. Structural Chemistry, 32, 1641–1650.

  • Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J. T., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G. J., Schmidt-Hattenberger, C., Edlmann, K., Wilkinson, M., Bentham, M., Haszeldine, R. S., Carbonell, R., & Rudloff, A. (2021). Enabling large-scale hydrogen storage in porous media - the scientific challenges. Energy & Environmental Science, 14, 853–864.

    Article  Google Scholar 

  • Ho, T. A., & Wang, Y. F. (2020). Pore size effect on selective gas transport in shale nanopores. Journal of Natural Gas Science and Engineering, 83, 103543.

    Article  Google Scholar 

  • Ho, C. K., & Webb, S. W. (2006). Gas transport in porous media. Springer.

    Book  Google Scholar 

  • Hsu, C. N., Tsai, S. C., & Liang, S. M. (1994). Evaluation of diffusion parameters of radon in porous material by flow-through diffusion experiment. Applied Radiation and Isotopes, 45, 845–850.

    Article  Google Scholar 

  • Inzoli, I., Simon, J.-M., & Kjelstrup, S. (2009). Surface adsorption isotherms and surface excess densities of n-butane in silicalite-1. Langmuir, 25, 1518–1525.

    Article  Google Scholar 

  • Jayaraman, A., Yang, R. T., Chinn, D., & Munson, C. L. (2005). Tailored clinoptilolites for nitrogen/methane separation. Industrial & Engineering Chemistry Research, 44, 5184–5192.

    Article  Google Scholar 

  • Jeffroy, M., Boutin, A., & Fuchs, A. H. (2011). Understanding the equilibrium ion exchange properties in faujasite zeolite from Monte Carlo simulations. Journal of Physical Chemistry B, 115, 15059–15066.

  • Jeffroy, M., Nieto-Draghi, C., & Boutin, A. (2014). Molecular simulation of zeolite flexibility. Molecular Simulation, 40, 6–15.

    Article  Google Scholar 

  • Jeffroy, M., Nieto-Draghi, C., & Boutin, A. (2017). New molecular simulation method to determine both aluminum and cation location in cationic zeolites. Chemistry of Materials, 29, 513–523.

    Article  Google Scholar 

  • Jordan, A. B., Stauffer, P. H., Knight, E. E., Rougier, E., & Anderson, D. N. (2015). Radionuclide gas transport through nuclear explosion-generated fracture networks. Scientific Reports, 5(1), 18383.

    Article  Google Scholar 

  • Karger, J., & Ruthven, D. M. (2016). Diffusion in nanoporous materials: Fundamental principles, insights and challenges. New Journal of Chemistry, 40, 4027–4048.

    Article  Google Scholar 

  • Karra, S., Makedonska, N., Viswanathan, H. S., Painter, S. L., & Hyman, J. D. (2015). Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resources Research, 51, 8646–8657.

    Article  Google Scholar 

  • Kennedy, D. A., & Tezel, F. H. (2018). Cation exchange modification of clinoptilolite - screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Microporous and Mesoporous Materials, 262, 235–250.

    Article  Google Scholar 

  • Krishna, R. (2012). Diffusion in porous crystalline materials. Chemical Society Reviews, 41, 3099–3118.

    Article  Google Scholar 

  • Kroutil, O., Nguyen, D. V., Volanek, J., Kucera, A., Predota, M., & Vranova, V. (2021). Clinoptilolite/electrolyte interface probed by a classical molecular dynamics simulations and batch adsorption experiments. Microporous and Mesoporous Materials, 328, 111406.

    Article  Google Scholar 

  • Lawler, K. V., Sharma, A., Alagappan, B., & Forster, P. M. (2016). Assessing zeolite frameworks for noble gas separations through a joint experimental and computational approach. Microporous and Mesoporous Materials, 222, 104–112.

    Article  Google Scholar 

  • Li, J. R., Kuppler, R. J., & Zhou, H. C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38, 1477–1504.

    Article  Google Scholar 

  • Li, J., Ullah, R., Jiao, J., Sun, J. H., & Bai, S. Y. (2020). Ion exchange of cations from different groups with ammonium-modified clinoptilolite and selectivity for methane and nitrogen. Materials Chemistry and Physics, 256, 123760.

    Article  Google Scholar 

  • Ma, Z. Y., & Ranjith, P. G. (2019). Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide. Fuel, 255, 115644.

    Article  Google Scholar 

  • Mohammed, S., & Gadikota, G. (2020). Exploring the role of inorganic and organic interfaces on CO2 and CH4 partitioning: Case study of silica, illite, calcite, and kerogen nanopores on gas adsorption and nanoscale transport behaviors. Energy & Fuels, 34, 3578–3590.

  • Murthy, V., Khosravi, M., & Mackinnon, I. D. R. (2018). Molecular modeling of univalent cation exchange in zeolite n. Journal of Physical Chemistry C, 122, 10801–10810.

    Article  Google Scholar 

  • Nagumo, R., Takaba, H., & Nakao, S. (2007). A methodology to estimate transport diffusivities in “single-file” permeation through zeolite membranes using molecular simulations. Journal of Chemical Engineering of Japan, 40, 1045–1055.

    Article  Google Scholar 

  • Neil, C. W., Boukhalfa, H., Xu, H., Ware, S. D., Ortiz, J., Avendaño, S., Harp, D., Broome, S., Hjelm, R. P., Mao, Y., Roback, R., Brug, W. P., & Stauffer, P. H. (2022). Gas diffusion through variably-water-saturated zeolitic tuff: Implications for transport following a subsurface nuclear event. Journal of Environmental Radioactivity, 250, 106905.

    Article  Google Scholar 

  • Pellenq, R. J. M., & Levitz, P. E. (2002). Capillary condensation in a disordered mesoporous medium: A grand canonical Monte Carlo study. Molecular Physics, 100, 2059–2077.

  • Perez-Carbajo, J., Dubbeldam, D., Calero, S., & Merkling, P. J. (2018). Diffusion patterns in zeolite MFI: The cation effect. Journal of Physical Chemistry C, 122, 29274–29284.

  • Perry, J. J., Teich-McGoldrick, S. L., Meek, S. T., Greathouse, J. A., Haranczyk, M., & Allendorf, M. D. (2014). Noble gas adsorption in metal-organic frameworks containing open metal sites. Journal of Physical Chemistry C, 118, 11685–11698.

    Article  Google Scholar 

  • Plimpton, S. J., Pollock, R., & Stevens, M. (1997). Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulations. Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, USA.

  • Simoncic, P., & Armbruster, T. (2004). Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal x-ray study. American Mineralogist, 89, 421–431.

    Article  Google Scholar 

  • Simonnin, P., Marry, V., Noetinger, B., Nieto-Draghi, C., & Rotenberg, B. (2018). Mineral- and ion-specific effects at clay-water interfaces: Structure, diffusion, and hydrodynamics. Journal of Physical Chemistry C, 122, 18484–18492.

    Article  Google Scholar 

  • Slavova, S. O., Sizova, A. A., & Sizov, V. V. (2020). Molecular dynamics simulation of carbon dioxide diffusion in naa zeolite: Assessment of surface effects and evaluation of bulk-like properties. Physical Chemistry Chemical Physics, 22, 22529–22536.

    Article  Google Scholar 

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A., & Sansom, M. S. P. (1996). Hole: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics & Modelling, 14, 354–360.

    Article  Google Scholar 

  • Smirnov, K. S. (2017). A molecular dynamics study of the interaction of water with the external surface of silicalite-1. Physical Chemistry Chemical Physics, 19, 2950–2960.

    Article  Google Scholar 

  • Smyth, J. R., Spaid, A. T., & Bish, D. L. (1990). Crystal-structures of a natural and a Cs-exchanged clinoptilolite. American Mineralogist, 75, 522–528.

  • Taghdisian, H., Tasharrofi, S., Firoozjaie, A. G., & Hosseinnia, A. (2019). Loading-dependent diffusion of SO2 in 13x and 5a using molecular dynamics: Effects of extraframework ions and topology. Journal of Chemical and Engineering Data, 64, 3092–3104.

  • Teleman, O., Jonsson, B., & Engstrom, S. (1987). A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Molecular Physics, 60, 193–203.

    Article  Google Scholar 

  • Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171.

  • Trucano, P., & Chen, R. (1975). Structure of graphite by neutron diffraction. Nature, 258, 136–137.

    Article  Google Scholar 

  • Uzunova, E. L., & Mikosch, H. (2013). Cation site preference in zeolite clinoptilolite: A density functional study. Microporous and Mesoporous Materials, 177, 113–119.

    Article  Google Scholar 

  • van Loef, J. J. (1981). On the thermo-physical properties of liquid rn 222. Physica B & C, 103, 362–364.

    Article  Google Scholar 

  • Viswanadham, N., & Kumar, M. (2006). Effect of dealumination severity on the pore size distribution of mordenite. Microporous and Mesoporous Materials, 92, 31–37.

    Article  Google Scholar 

  • Wendling, J., Justinavicius, D., Sentis, M., Amaziane, B., Bond, A., Calder, N. J., & Treille, E. (2019). Gas transport modelling at different spatial scales of a geological repository in clay host rock. Environmental Earth Sciences, 78, 221.

    Article  Google Scholar 

  • Wilson, A. H. (1948). V. A diffusion problem in which the amount of diffusing substance is finite. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 48–58.

    Article  Google Scholar 

  • Yu, H., Xu, H., Fan, J., Wang, F., & Wu, H. (2020). Roughness factor-dependent transport characteristic of shale gas through amorphous kerogen nanopores. The Journal of Physical Chemistry C, 124, 12752–12765.

    Article  Google Scholar 

  • Yu, Y., Li, X., Min, X., Shang, M., Tao, P., & Sun, T. (2022). Influences of channel morphology and brønsted acidity on ETS-10, ZSM-5, and SSZ-13 for xenon and krypton separation. Journal of Environmental Chemical Engineering, 10, 106982.

  • Zhang, T., & Sun, S. Y. (2019). A coupled lattice boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption. Fuel, 246, 196–203.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Todd R. Zeitler for helpful discussions. This work was fully supported by the LDRD program of Sandia National Laboratories. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. This article has been authored by an employee of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The employee owns all right, title and interest in and to the article and is solely responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1800 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greathouse, J.A., Paul, M.J., Xu, G. et al. Molecular Dynamics Simulation of Pore-Size Effects on Gas Adsorption Kinetics in Zeolites. Clays Clay Miner. 71, 54–73 (2023). https://doi.org/10.1007/s42860-023-00231-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00231-x

Keywords

Navigation